

Review

Could Contamination Avoidance Be an Endpoint That Protects the Environment? An Overview on How Species Respond to Copper, Glyphosate, and Silver Nanoparticles

M. Antonella Alcívar¹, Marta Sendra², Daniel C. V. R. Silva³, Enrique González-Ortegón⁴, Julián Blasco⁴, Ignacio Moreno-Garrido⁴ and Cristiano V. M. Araújo^{4,*}

- ¹ Department of Agricultural Chemistry and Soil Science, University of Cordoba, 14071 Córdoba, Spain; antonellaalcivar25@gmail.com
- ² Institute of Marine Research (IIM), Spanish National Research Council (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain; msendra@iim.csic.es
- ³ Institute of Exact Sciences, Federal University of Southern and Southeastern Pará, Marabá 68507-590, Pará, Brazil; daniel_cruzeiro@yahoo.com.br
- ⁴ Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (ICMAN), Campus Río San Pedro, Puerto Real, 11510 Cádiz, Spain; e.gonzalez.ortegon@csic.es (E.G.-O.); julian.blasco@csic.es (J.B.); ignacio.moreno@icman.csic.es (I.M.-G.)
- Correspondence: cristiano.araujo@icman.csic.es

check for updates

Citation: Alcívar, M.A.; Sendra, M.; Silva, D.C.V.R.; González-Ortegón, E.; Blasco, J.; Moreno-Garrido, I.; Araújo, C.V.M. Could Contamination Avoidance Be an Endpoint That Protects the Environment? An Overview on How Species Respond to Copper, Glyphosate, and Silver Nanoparticles. *Toxics* **2021**, *9*, 301. https://doi.org/10.3390/ toxics9110301

Academic Editor: Emilio Benfenati

Received: 10 October 2021 Accepted: 9 November 2021 Published: 11 November 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). Abstract: The use of non-forced multi-compartmented exposure systems has gained importance in the assessment of the contamination-driven spatial avoidance response. This new paradigm of exposure makes it possible to assess how contaminants fragment habitats, interfering in the spatial distribution and species' habitat selection processes. In this approach, organisms are exposed to a chemically heterogeneous scenario (a gradient or patches of contamination) and the response is focused on identifying the contamination levels considered aversive for organisms. Despite the interesting results that have been recently published, the use of this approach in ecotoxicological risk studies is still incipient. The current review aims to show the sensitivity of spatial avoidance in non-forced exposure systems in comparison with the traditional endpoints used in ecotoxicology under forced exposure. To do this, we have used the sensitivity profile by biological groups (SPBG) to offer an overview of the highly sensitive biological groups and the species sensitive distribution (SSD) to estimate the hazard concentration for 5% of the species (HC₅). Three chemically different compounds were selected for this review: copper, glyphosate, and Ag-NPs. The results show that contamination-driven spatial avoidance is a very sensitive endpoint that could be integrated as a complementary tool to ecotoxicological studies in order to provide an overview of the level of repellence of contaminants. This repellence is a clear example of how contamination might fragment ecosystems, prevent connectivity among populations and condition the distribution of biodiversity.

Keywords: environmental heterogeneity; multi-compartment exposure system; non-forced exposure; sensitive profile; species sensitivity distribution

1. Ecotoxicology and Avoidance in a Chemically Heterogeneous Landscape

During the last 50 years since ecotoxicology was proposed as a new science [1], there has been a continuous advance regarding the number of methods, test species, and responses employed to assess the effects of contamination on organisms and ecosystems. The search for the most sensitive species has led researchers to test numerous species from different biological groups, trophic levels, and geographic distribution [2,3]. However, the concept of the most sensitive species has become obsolete as it is a rather theoretical concept since one species can be very sensitive to a given class of contaminants, but less sensitive to another one [2,4–6]. Alongside the need to standardize the test procedures adopted by industries and governments as a legal tool for the environmental risk assessments (ERAs)

conducted; researchers need to use organisms that meet some basic requisites besides the sensitivity and ecological relevance [7]. For example, it should be relatively easy and cheap to culture organisms in a laboratory and the procedures to test toxicity should be simple and practical [3]. For this reason, ecotoxicology focused particularly on the growth inhibition tests with microalgae, and mortality/immobilization and reproduction tests with daphnids and fish. Over the years, organisms from temperate zones (mainly from Europe and United States) have been used widely, regardless of their importance for other ecosystems, because the experimental procedures were technically more developed and standardized [8,9]. However, many researchers from different geographic areas turned their focus to local key species, adapting or even creating new experimental procedures for the species considered of ecological importance. All these processes coupled with the rapid development of molecular biology (from the perspective of the sub-individual; [10]) and to higher integration of ecological concepts (from a perspective of ecosystem structure and functioning; [11]), have favored unprecedented advances in the field of ecotoxicology. Today, ecotoxicological studies are able to provide valuable information about the risk contaminants represent to organisms, although some limitations still exist regarding the extrapolation to natural ecosystems [12].

In this context, one classical paradigm of the ecotoxicity tests is the continuous and mandatory exposure of organisms to contaminants. Those tests assume that organisms in natural ecosystems are forcedly exposed to contaminants, with no possibility of fleeing. However, complementary methods, in which organisms are simultaneously exposed to several concentrations and can choose the most favorable one, have been proposed (see review by Jutfelt et al. [13]). Initially, these methods provided a bi-compartmentalization of the system (with and without contaminant), but with the limitation of not allowing the calculation of ACx (the concentration that triggers the avoidance of x% of the population) that is analog to the classical LCx (lethal concentration), ECx (effective concentration), etc. That, to some extent, prevents the comparison of data obtained from both approaches. However, new methods using non-forced, multi-compartmented linear exposure systems (linear 1-D system by Lopes et al. [14] and 2-D HeMHAS by Araújo et al. [15]) have been developed recently. The main benefit of the multi-compartmentalization exposure systems is the possibility of determining the concentrations of a contaminant in each zone (compartment) through which the organisms can move freely, providing an idea of the potential repellence or attractiveness of the contaminants [14,16,17]. It is important to bear in mind that this approach should be seen as a complementary tool to the classical forced exposure approach, as the non-forced approach provides information about how contamination could affect the spatial distribution of the organisms, but not about the toxic effects [17,18]. Thus, the concept of toxicity at the individual level is replaced by the effects on the dynamics of dispersion (spatial avoidance) and habitat selection, from a landscape (connected habitats) perspective [19–21]. Although non-forced exposure supposes no effect at the individual level, the fleeing of a species from an ecosystem could, ecologically, be considered similar to the death of the individuals [14]. Due to this methodological and conceptual particularity of the non-forced multi-compartmented approach, an important question arises: how sensitive is the avoidance response in highlighting the potential risk of a chemical compound?

Although the amount of data generated by ecotoxicology has been considerable over the last few years for many contaminants, especially the contaminants of emerging concern (new agrochemicals, nanoparticles, sunscreens, pharmaceutical products, plastic derivatives, etc.; [22]), information is still scarce. This seems to be highlighted when a new paradigm such as the non-forced multi-compartmented exposure is to be applied. Although this exposure approach has increased in ecotoxicological studies (see reviews by Araújo et al. [23] and Moreira-Santos et al. [24]), information about the real potential of contaminants to trigger avoidance in organisms and to change their habitat selection patterns is very limited. In addition, it is not clear whether toxicity and repellency are comparable in terms of sensitivity [17].

The current review aims to assess how sensitive the avoidance response measured in multi-compartmented exposure systems is in comparison with the various toxic responses used in ecotoxicology from forced exposure experiments. To this end, a sensitivity profile by biological groups (SPBG; [25] for three reference contaminants (copper, glyphosate, and silver nanoparticles—Ag-NPs) was created. The SPBG is a simple way to identify the biological groups that could be considered more susceptible and the groups of responses that could provide an idea about the main toxic effects expected to occur. Secondly, we assessed whether the concentrations that trigger an avoidance response for 50% of the population (AC₅₀) will be among the responses that are expected to occur at concentrations considered hazardous for 5% of the species (HC₅; [6]). Finally, we discuss: (i) the sensitivity of the avoidance response as an endpoint (focusing on the repellence of contaminants) from non-forced exposure approaches compared to toxicity data from forced exposure, (ii) the feasibility of using the avoidance response in multi-compartmented systems as a complementary tool in ERAs, and (iii) the ecological relevance and improvements that could result from integrating the avoidance response into ecotoxicological studies.

2. Chemicals Used as Reference Contaminants

To compare the sensitivities among avoidance response and other endpoints, three chemicals with completely different chemical characteristics and modes of action were chosen as the reference contaminants: copper, glyphosate, and Ag-NPs. Copper was selected as one of the most traditional chemical compounds used in ecotoxicology [26,27] with an ample amount of data available and because it is one of the most ubiquitous contaminants used in different sectors such as industry and agriculture. Glyphosate was also selected because it is one of the most widely used pesticides in the world and it is the object of widespread controversy concerning the effects it can produce on non-target organisms [28,29]. Finally, Ag-NPs are a contaminant of emerging concern chosen due to being one of the most common nanomaterials found in consumer products such as antimicrobial agents [30,31]. More than 100 results of ecotoxicological data were revised and included in the current study for each contaminant (Tables S1–S3). Particularly in the case of Ag-NPs, avoidance experiments were performed in multi-compartmented systems to compensate for the absence of data in the literature and make it possible to compare the results. The experiments are described briefly in the next section.

3. Avoidance Assays with Ag-NPs

Ag-NPs (<15 nm in aqueous suspension; US7140—US Research Nanomaterials, Inc., Houston, TX USA) described by Sendra et al. [32] were used. Avoidance assays were performed in the non-forced, six-compartmented exposure systems used by Islam et al. [33], and zebrafish (*Danio rerio*) were used as the test organisms. Initially, different concentrations of Ag-NPs (0, 5, 10, 20, 40, and 80 μ g/L) were prepared and put into the system in the form of a gradient. Afterward, five juveniles of zebrafish (body size: 2.0 to 2.5 cm) were introduced in each concentration; therefore, 30 organisms were used in each replicate. The experiment was run in triplicate. The displacement of the fish was recorded at different time intervals: 30, 60, 90, 120, 150, and 180 min and after 24 h. A red light was used during observation to minimize the interference of the observer on the behavior of the fish. Exposure was performed at 22 °C and in the dark. More details about the assay are described in Islam et al. [33].

4. Sensitivity Profile by Biological Groups: Definition

SPBG is a representation of the potential toxicity of contaminants intended to provide information on the sensitivity of the ecotoxicological responses measured in different biological groups. This representation offers an overview that could help researchers to better identify the biological groups and the endpoints that could be more suitable to assess the toxicity of a specific, or class of, chemical (s). This representation was chosen because it provides a clear visual panorama of how sensitive the avoidance response might be when compared with other endpoints. All the information of the studies analyzed can be verified in Tables S1–S3.

The data collected to create the sensitivity profile were based on the concentrations that cause 50% of effect (EC_{50}). Although NOEC (the highest no-observed effective concentration) or LOEC (the lowest observed effective concentration) could be more protective environmentally, they were not chosen because both are dependent on the concentrations used in the studies. The use of the EC_{50} values did not have an environmental criterion, but instead, it was adopted to standardize the database.

The first step to creating the SPBG consisted in revising published papers looking for different species and different responses to create a sufficiently robust and diverse (as many species and responses as possible) database. The review of the literature (Google Scholar, Scielo, Scopus, and Web of Knowledge) was performed using various words like aquatic, ecosystems, EC or LC or IC, sensitivity, toxicity, and the name of the contaminant (copper, glyphosate, or Ag-nanoparticle). No selection about the year was made. Preferably, studies published in high impact factor journals (Q1 and Q2 according to JCR index) were selected, except if the study presented particular data for a determined species or response. When an imbalance regarding the amount of data for a given biological group or endpoint was identified, a more specific search taking into consideration the response or biological group of interest was performed, to provide more information about the specific biological group or endpoint. All the species were classified by biological groups in accordance with the groups described in Table 1 (see also Tables S1–S3). When the number of species in a group in the database was very high (like Crustacea), different subgroups (such as cladocerans, shrimps, crabs ...) were created to discriminate any differences in the sensitivity of each subgroup. Data were not separated by species because the species used in a geographic region are not necessarily representative of another region; therefore, the organization by biological group made the selection of other species of the same biological group in a different region easier. Afterward, the ecotoxicological responses were classified as shown in Table 1. Finally, the data concerning toxicity were plotted according to biological groups and responses.

Table 1. Classification of the ecotoxicological responses used in the sensitivity profile of the three chemicals used in the current study by biological group.

Classification of the Effect	Ecotoxicological Responses
Mortality/Immobilization	Death; immobilization
Biochemical	Biomarkers of exposure and effects, enzymes, proteins
Physiological	Respiration rate; heartbeat
Feeding	Ingestion; excretion; post-exposure feeding
Growth/Reproduction	Increase in the body size; population growth (cell numbers)
Morphological	Any morphological alterations
Bohavioral	Changes in the movement patterns; all the effects related to swimming; fleeing
Denavioral	from a predator; sinking; burrowing
Spatial avoidance	Avoidance behavior related to the habitat selection response measured
-r	exclusively in multi-compartmented exposure systems

5. The Hazard Concentration (HC₅) Based on the Species Sensitive Distribution (SSD)

From the EC_{50} data used in the sensitivity profile for biological groups, the species sensitive distribution (SSD) [6] was also generated. When there were two results as the endpoint for the same species, the most sensitive data (lower EC_{50}) was used. Finally, the hazard concentration for 5% of the species (HC₅) was calculated from the SSD according to Posthuma et al. [6] to identify whether the avoidance response can be observed within the concentrations that suppose a risk for the most (5%) sensitive responses.

6. Results: Sensitivity Profile by Biological Group

As copper is one of the most widely used contaminants in ecotoxicology, the sensitivity profile was more diverse regarding biological groups and endpoints compared to the SPBG of glyphosate and Ag-NPs. In total, 19 biological groups were included for the SPBG of copper (Figure 1), while 9 biological groups were used for glyphosate (Figure 2) and only data for 5 biological groups concerning Ag-NPs were found (Figure 3). Similarly, the responses selected were more diverse for copper (8 groups of response), followed by glyphosate (6 groups of response) and Ag-NPs (5 groups of response). All the data described in the next sections, and their respective references, may be verified in Tables S1–S3. Any reference to the most or least sensitive organism or response discussed in the next sections should be viewed with caution due to intrinsic differences regarding the environmental conditions of the experiments (see more details in the "Avoidance response: relevance and final remarks" section). In addition, it should be taken into consideration that the database used in the current review has its limitation regarding the number of manuscripts revised.

6.1. Copper

From the bibliographic review, 160 results were selected for the SPBG to copper (Figure 1; see the complete database in Table S1), 79 for freshwater species, and 81 for marine/estuarine species. The most frequent response was immobility/mortality, which was selected for 13 out of 19 biological groups. The most sensitive biological group for considering the immobility/mortality response was the cladocerans *Bosmina longirostris* with EC_{50} values of 1.4 µg/L.

Figure 1. Sensitivity profile for the biological groups exposed to copper-based on the EC_{50} values. The effects, represented by different symbols, were classified according to Table 1. Data in blue and green represent, respectively, freshwater and estuarine/marine species. Data shown in the red zone represent results whose EC_{50} values are higher than 500 µg/L; therefore, the scale should not be considered in this zone (see real data in Table S1).

Figure 2. Sensitivity profile for the biological groups exposed to glyphosate-based on the EC_{50} values. The effects, represented by different symbols, were classified according to Table 1. Data in blue and green represent, respectively, freshwater and estuarine/marine species. Data shown in the red zone represent results whose EC_{50} values are higher than 500 mg/L; therefore, the scale should not be considered in this zone (see real data in Table S2).

Figure 3. Sensitivity profile for biological groups exposed to Ag-NPs based on the EC_{50} values. The effects, represented by different symbols, were classified according to Table 1. Data in blue and green represent, respectively, freshwater and estuarine/marine species. Data shown in the red zone represent results whose EC_{50} values are higher than 8000 mg/L; therefore, the scale should not be considered in this zone (see real data in Table S3).

Growth/reproduction inhibition was the second most common response and was observed in 12 out of 19 biological groups. For this endpoint, microalgae and copepods were proven to be the most sensitive groups; however, microalgae presented the greatest number of sensitive species with EC₅₀ values lower than 10 μ g/L: e.g., *Isochrysis* aff. *galbana* clone T-ISO (EC₅₀ of 0.4 μ g/L), *Cylindrotheca closterium* (EC₅₀ of 4.7 μ g/L), *Selenastrum capricornutum* (EC₅₀ of 6 μ g/L) *Chlorella* sp. (EC₅₀ of 6 μ g/L).

The gastropods *Nassarius dorsatus* (EC₅₀ of 4.7 μ g/L) and *Haliotis rubra* (EC₅₀ of 7.1 μ g/L) presented a high sensitivity to copper when growth/reproduction and morphological alterations were considered as the endpoints, respectively. The sensitivity of the rotifers to copper was represented by many different responses, but with ample variation regarding the sensitivity. Although the responses related to biochemical changes, feeding, behavior, and mortality/immobilization were relatively sensitive, the data of the sensitivity profile presented a great dispersion regarding the EC₅₀ values. Some species of cnidarian and bivalves seem to be highly sensitive to copper (EC₅₀ lower than 10 μ g/L; see detail in Table S1).

Regarding avoidance, results were obtained for cladocerans, shrimps, amphibians, and fish. In general, the sensitivity of the organisms to avoiding copper is comparable to the most sensitive values observed in the other biological groups (Figure 1). The most sensitive values for avoidance response were observed for the estuarine/marine shrimp *Palaemon varians* (AC₅₀ of 10 μ g/L) and *Litopenaeus vannamei* (AC₅₀ of 11 μ g/L), followed by the freshwater fish *Danio rerio* and *Poecilia reticulata*, both with an AC₅₀ of 16 μ g/L. The cladoceran *Daphnia longispina* also proved to be able to avoid copper but at a higher concentration (AC₅₀ of 65 μ g/L). Finally, the amphibians were the groups tested with higher AC₅₀ values: *Lithobates catesbeianus* (101 μ g/L), *Leptodactylus latrans* (102 μ g/L), *Pelophylax perezi* (178 μ g/L).

6.2. Glyphosate

This sensitivity profile to glyphosate was formed by 105 results from 9 biological groups, the majority (97 results) were from freshwater; only 8 results were used for estuarine/marine species (Figure 2). Although the concentrations at which organisms respond to glyphosate are much higher than those for copper, a similarity was observed regarding the most common endpoints tested: growth/reproduction inhibition and mortal-ity/immobilization.

Microalgae was the most common group included as test organisms, and the data collected (exclusively for growth inhibition) showed high variability in the sensitivity. High variation in the data has also been documented for fish, even considering the same response like mortality/immobilization. On the other hand, the results found for amphibians are very consistent and sensitive; the lowest EC_{50} value observed was for the mortality/immobilization response of *Rana clamitans* (2.7 mg/L). Similarly, the macrophyte *Lemna minor* was shown to be a very sensitive organism. Data of different responses have been found for this species (Table S2) and EC_{50} values as low as 0.09, 0.40, and 1.32 mg/L have been observed for biochemical effects, growth/reproduction, and physiological changes, respectively.

Considerations about the avoidance response must be made with caution because there is only one item of data for exposure to glyphosate. The avoidance shown by *Danio rerio* was observed at very low concentrations (AC₅₀ of 0.0015 mg/L), much lower than the second most sensitive response for fish: mortality of *Pimpehales promelas* with EC₅₀ of 97 mg/L. The complete database is described in Table S2.

6.3. Silver Nanoparticles

Few studies were found for this contaminant. Only five biological groups and five groups of respondents were represented (Figure 3). As observed in the previous sensitivity profile, microalgae presented the highest quantity of data and high variability

in the results. In this group, two endpoints were recorded: physiological changes and growth/reproduction. The microalgae species that were shown to be highly sensitive (EC₅₀ inferior a 20 μ g/L) to Ag-NPs were: *Pseudokirchneriella subcapitata* (EC₅₀ of 3.02 μ g/L) and *Chlamydomonas reinhardtii* (EC₅₀ of 19.8 μ g/L). Data from cladocerans also showed a great sensitivity regarding the mortality/immobilization response. The most sensitive response was observed in *Daphnia magna* with an EC₅₀ of 0.75 μ g/L, followed by *Ceriodaphnia dubia* with an EC₅₀ of 5 μ g/L.

Regarding fish, the sensitivity to Ag-NPs seems not to be very high. An EC₅₀ value as high as 12,600 μ g/L was observed for morphological changes in *Oreochromis mossambicus*. On the other hand, the spatial avoidance measured in *D. rerio* with an AC₅₀ of 2.5 μ g/L (data from the current study) was the most sensitive response found for this biological group, and one of the most sensitive when compared to the other biological groups. Growth in aquatic plants did not show great sensitivity to Ag-NPs except for two results (see details of the EC₅₀ in Table S3). The annelids seem to be the organisms with the lowest sensitivity to Ag-NP exposure.

7. Sensitivity of Avoidance Response According to SSD and HC5

Due to the quantity of data collected for copper, the SSD was divided into two groups: freshwater and estuarine/marine organisms (Figure 4A,B, respectively). For glyphosate and Ag-NPs, only data from freshwater species were used, because very little data for estuarine/marine species were found (Figure 5A,B, respectively). For the four SSDs, the sigmoidal model was statistically significant (p < 0.001), and the coefficients of determination were always higher than 0.9 (Figures 4 and 5). Regarding the HC₅, the values calculated (and confidence intervals) were: 3.63 µg/L (3.22–4.10 µg/L) and 6.19 µg/L (5.67–6.77 µg/L) for freshwater and estuarine/marine species exposed to copper, respectively (Figure 4A,B), and 2.10 mg/L (1.59–2.74 µg/L) and 1.36 µg/L (8.96–2.04 µg/L) for freshwater and Ag-NPs, respectively (Figure 5A,B).

Figure 4. Species sensitive distribution (SSD), and 95% confidence intervals, expressed as the probability of the species being affected according to the log of the copper concentrations, considering the freshwater (**A**) and estuarine/marine (**B**) species. The spatial avoidance response is represented by red circles. Values of hazard concentrations for 5% of the species (HC₅) and the confidence intervals are also shown for each group of data.

Figure 5. Species sensitive distribution (SSD), and 95% confidence intervals, expressed as the probability of the species being affected according to the log of the glyphosate (**A**) and Ag-NPs (**B**) concentrations, considering the freshwater species. The spatial avoidance response is represented by red circles. Values of hazard concentrations for 5% of the species (HC₅) and the confidence intervals are also shown for each group of data.

Considering the SSD curves, the avoidance response (red circles) of the freshwater species exposed to copper seems to be only moderately sensitive compared to other responses. The most sensitive avoidance response was observed at 16 μ g/L (*D. rerio* and *P. reticulata*), which is higher than the HC₅ value (3.63 μ g/L). For estuarine/marine species exposed to copper (Figure 4B), the avoidance responses were distributed at the extremes of the range of sensitivity, where some organisms seem to respond by avoiding low copper concentrations (*Palaemon varians* at 10 μ g/L and *Litopenaeus vannamei* at 11 μ g/L), while the fish *Rachycentron canadum* (AC₅₀ of 800 μ g/L) seems to be less responsive. The repellence of copper for the most responsive species (*P. varians* and *L. vannamei*) occurred at concentrations similar to those affecting the most sensitive species and close to the HC₅ value (6.19 μ g/L).

Analyzing the SSD models for glyphosate and Ag-NPs (Figure 5A,B), the avoidance response appeared as one of the most sensitive endpoints. In the case of glyphosate, the AC₅₀ for the fish *D. rerio* (0.0015 mg/L) is even lower than the HC₅ calculated (2.10 mg/L). For Ag-NPs, the AC₅₀ for *D. rerio* (2.5 μ g/L) was slightly higher than the HC₅ (1.36 μ g/L).

8. Avoidance Response: Relevance and Final Remarks

This review is an attempt to situate the avoidance response (using the non-forced multi-compartmented exposure approach) into the sensitivity profile by biological groups to assess how sensitive it is. The data of the three contaminants (copper, glyphosate, and Ag-NPs) assessed here showed that avoidance may be considered a very sensitive response, even when compared with the most traditional endpoints such as growth/reproduction inhibition, physiological changes, feeding, mortality/immobilization, and others. As the use of avoidance in multi-compartmented exposure systems, first proposed by Lopes et al. [14], supposes a shift in the paradigm of how organisms are exposed to contaminants and which kind of response is measured (not toxicity, but repellence instead), this approach provides a complementary perspective concerning the risk that contamination may represent to ecosystems.

This response can be applied in different approaches, either by integrating the loss of population due to avoidance with mortality and reproduction [34,35] thereby assessing the decline of populations due to these three responses; simulating changes in the avoidance response and spatial distribution of organisms under scenarios of global changes [36] to predict the loss of populations due to the inhospitable environmental conditions or

integrating it with other responses to assess how avoidance can be impaired if some toxic effects occur in organisms [37,38]. As a complementary tool to evaluate how contamination affects the spatial distribution of species, this approach allows researchers to apply a more ecological view of ecotoxicology by simulating some real scenarios, in which the chemical heterogeneity can generate attractive and repellent areas. This spatially broader perspective of the impact of contamination leads to new ecological concepts that can be included in ecotoxicological studies when the avoidance response is used: for instance, colonization [33,39]. This involves assessing the possibility of an area being colonized depending on the levels of contamination that make it attractive. Further, the concept of habitat connectivity/selection [15,16], which considers ecosystems as a spatially continuous landscape throughout which organisms can move. Another new aspect for consideration is habitat fragmentation [40], which integrates the concept of a chemical barrier that prevents the free displacement of species between areas separated by high levels of contamination. Taking into account that the loss of connectivity of habitats is a serious threat to biodiversity, the role of contamination in the chemical fragmentation of habitats should be considered by ecotoxicologists.

Although there is very little data on the avoidance response of organisms to contaminants, this review has shown the high sensitivity of this endpoint. The importance of avoidance as an ecotoxicological endpoint may be deduced from the sensitivity profiles and SSD for copper, glyphosate, and Ag-NPs. In order to protect the environment, it is not only important to know the toxic effect that contaminants produce, but also to what extent their repellence triggers the fleeing of organisms to more favorable areas. We encourage the use of the avoidance response employing non-forced exposure scenarios to make the integration of this response in SSD models more robust, reducing the uncertainties [41] and potentially providing environmentally more protective HC_5 values [42].

Finally, it is important to consider that, despite the high sensitivity of the avoidance response in non-forced exposure systems, any comparison of the sensitivities of organisms to contaminants should be viewed with great caution. This is necessary because the way organisms respond to chemicals not only depends on the species, their life stages used in the tests, and their origins; but also on several factors such as the environmental conditions under which the organisms are cultured and the tests performed (e.g., the chemical composition of the culture medium, levels of dissolved oxygen, pH, temperature, salinity) [43–45].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/ 10.3390/toxics9110301/s1, Table S1: copper, Table S2: glyphosate, Table S3: Ag-NPs.

Author Contributions: Conceptualization, M.A.A. and C.V.M.A.; methodology, M.A.A., M.S., D.C.V.R.S., E.G.-O., I.M.-G. and C.V.M.A.; formal analysis, M.A.A. and C.V.M.A.; investigation, M.A.A., M.S., D.C.V.R.S., E.G.-O., I.M.-G. and C.V.M.A.; resources, J.B. and C.V.M.A.; writing—original draft preparation, M.A.A. and C.V.M.A.; writing—review and editing, M.A.A., M.S., D.C.V.R.S., E.G.-O., J.B., I.M.-G. and C.V.M.A.; funding acquisition, J.B. and C.V.M.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by MCIN/AEI/ 10.13039/501100011033 (BrEStress project: PID2019-105868RA-I00) and Spanish National Research Council-CSIC (MultiCecotox project: COOPB20444).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: C.V.M. Araújo is grateful to the grant (Ramón y Cajal contract: RYC-2017-22324) funded by MCIN/AEI/10.13039/501100011033 and by "ESF Investing in your future". The authors thank Jon Nesbit for his revision of the English text.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

References

- 1. Truhaut, R. Ecotoxicology—A new branch of toxicology: A general survey of its aims methods, and prospects. In *Ecological Toxicology Research*; McIntyre, A.D., Mills, C.F., Eds.; Springer: Boston, MA, USA, 1975.
- 2. U.S. EPA—U.S. Environmental Protection Agency. *Methods for Acute Toxicity Test with Fish, Macroinvertebrates, and Amphibians;* National Environmental Research Center: Corvallis, OR, USA, 1975; p. 62.
- 3. Roberts, M.H.; Warinner, J.E.; Tsai, C.F.; Wright, D.; Cronin, L.E. Comparison of estuarine species sensitivities to three toxicants. *Arch. Environ. Contam. Toxicol.* **1982**, *11*, 681–692. [CrossRef]
- 4. Cairns, J., Jr. Are single species toxicity tests alone adequate for estimating environmental hazard? *Environ. Monitor. Assess.* **1984**, *4*, 259–273. [CrossRef]
- 5. Cairns, J.; Niederlehner, B.R. Problems associated with selecting the most sensitive species for toxicity testing. *Hydrobiologia* **1987**, 153, 87–94. [CrossRef]
- 6. Posthuma, L.; Traas, T.P.; Suter, G.W., II (Eds.) General introduction and species sensitive distribution. In *Species Sensitive Distribution in Ecotoxicology*; Lewis Publishers: Boca Raton, FL, USA, 2002; pp. 3–10.
- 7. Koivisto, S. Is *Daphnia magna* an ecological representative zooplankton species in toxicity tests? *Environ. Pollut.* **1995**, *90*, 263–267. [CrossRef]
- Gray, J.S. Do bioassays adequately predict ecological effects of pollutants? In *Environmental Bioassay Techniques and Their Application*; Springer: Berlin/Heidelberg, Germany, 1989; Volume 188–189, pp. 397–402.
- 9. Lacher, T.E., Jr.; Goldstein, M.I. Tropical ecotoxicology: Status and needs. Environ. Toxicol. Chem. 1997, 16, 100–111. [CrossRef]
- 10. Zhang, W.; Xia, P.; Wang, P.; Yang, J.; Baird, D.J. Omics advances in ecotoxicology. *Environ. Sci. Technol.* **2018**, *52*, 3842–3851. [CrossRef]
- 11. Van den Brink, P.J. Ecological risk assessment: From book-keeping to chemical stress ecology. *Environ. Sci. Technol.* **2008**, 42, 8999–9004. [CrossRef] [PubMed]
- 12. Forbes, V.E.; Schmolke, A.; Accolla, C.; Grimm, V. A plea for consistency, transparency, and reproducibility in risk assessment effect models. *Environ. Toxicol. Chem.* **2019**, *38*, 9–11. [CrossRef]
- 13. Jutfelt, F.; Sundin, J.; Raby, G.D.; Krang, A.-S.; Clark, T.D. Two-current choice flumes for testing avoidance and preference in aquatic animals. *Methods Ecol. Evol.* **2017**, *8*, 379–390. [CrossRef]
- 14. Lopes, I.; Baird, D.J.; Ribeiro, R. Avoidance of copper contamination by field populations of *Daphnia longispina*. *Environ*. *Toxicol*. *Chem.* **2004**, *23*, 1702–1708. [CrossRef]
- Araújo, C.V.M.; Roque, D.; Blasco, J.; Ribeiro, R.; Moreira-Santos, M.; Toribio, A.; Aguirre, E.; Barro, S. Stress-driven emigration in a complex scenario of habitat disturbance: The heterogeneous multi-habitat assay system (HeMHAS). *Sci. Total Environ.* 2018, 644, 31–36. [CrossRef] [PubMed]
- Vera-Vera, V.C.; Guerrero, F.; Blasco, J.; Araújo, C.V.M. Habitat selection response of the freshwater shrimp *Atyaephyra desmarestii* experimentally exposed to heterogeneous copper contamination scenarios. *Sci. Total Environ.* 2019, 662, 816–823. [CrossRef] [PubMed]
- 17. Araújo, C.V.M.; Laissaoui, A.; Silva, D.C.V.R.; Ramos-Rodríguez, E.; González-Ortegón, E.; Espíndola, E.L.G.; Baldó, F.; Mena, F.; Parra, G.; Blasco, J.; et al. Not only toxic but repellent: What can organisms' responses tell us about contamination and what are the ecological consequences when they flee from an environment. *Toxics* **2020**, *8*, 118. [CrossRef]
- 18. Blasco, J.; Araújo, C.V.M.; Ribeiro, R.; Moreira-Santos, M. Do contaminants influence the spatial distribution of aquatic species? How new perspectives on ecotoxicological assays might answer this question. *Environ. Toxicol. Chem.* **2020**, *39*, 7–8. [CrossRef]
- 19. Loreau, M.; Mouquet, N.; Holt, R.D. Meta-ecosystems: A theoretical framework for a spatial ecosystem ecology. *Ecol. Lett.* 2003, *6*, 673–679. [CrossRef]
- Moe, S.J.; De Schamphelaere, K.; Clements, W.H.; Sorensen, M.T.; Van den Brink, P.J.; Liess, M. Combined and interactive effects of global climate change and toxicants on populations and communities. *Environ. Toxicol. Chem.* 2013, 32, 49–61. [CrossRef] [PubMed]
- Araújo, C.V.M.; Blasco, J. Spatial avoidance as a response to contamination by aquatic organisms in non-forced, multicompartmented exposure systems: A complementary approach to the behavioral response. *Environ. Toxicol. Chem.* 2019, 38, 312–320. [CrossRef] [PubMed]
- 22. Sanderson, H.; Solomon, K. Contaminants of emerging concern challenge ecotoxicology. *Environ. Toxicol. Chem.* 2009, 28, 1359. [CrossRef]
- 23. Araújo, C.V.M.; Moreira-Santos, M.; Ribeiro, R. Active and passive spatial avoidance by aquatic organisms from environmental stressors: A complementary perspective and a critical review. *Environ. Int.* **2016**, *92*, 405–415. [CrossRef]
- 24. Moreira-Santos, M.; Ribeiro, R.; Araújo, C.V.M. What if aquatic animals move away from pesticide-contaminated habitats before suffering adverse physiological effects? A critical review. *Crit. Rev. Environ. Sci. Technol.* **2019**, *49*, 989–1025. [CrossRef]

- Araújo, C.V.M.; Gómez, L.; Silva, D.C.V.R.; Pintado-Herrera, M.G.; Lara-Martín, P.A.; Hampel, M.; Blasco, J. Risk of triclosan based on avoidance by the shrimp *Palaemon varians* in a heterogeneous contamination scenario: How sensitive is this approach? *Chemosphere* 2019, 235, 126–135. [CrossRef] [PubMed]
- 26. Nor, Y.M. Ecotoxicity of copper to aquatic biota: A review. Environ. Res. 1987, 43, 274–282. [CrossRef]
- 27. Lee, D.R. Reference toxicants in quality control of aquatic bioassays. In *Aquatic Invertebrate Bioassays, ASTM STP 715;* Buikema, A.L., Jr., Cairns, J., Jr., Eds.; American Society for Testing Materials: West Conshohocken, PA, USA, 1980; pp. 188–199.
- 28. Annett, R.; Habibi, H.R.; Hontela, A. Impact of glyphosate and glyphosate-based herbicides on the freshwater environment. *J. Appl. Toxicol.* **2014**, *34*, 458–479. [CrossRef] [PubMed]
- Gill, J.P.K.; Sethi, N.; Mohan, A.; Datta, S.; Girdhar, M. Glyphosate toxicity for animals. *Environ. Chem. Lett.* 2018, 16, 401–426. [CrossRef]
- 30. Blaser, S.A.; Scheringer, M.; MacLeod, M.; Hungerbühler, K. Estimation of cumulative aquatic exposure and risk due to silver: Contribution of nano-functionalized plastics and textiles. *Sci. Total Environ.* **2008**, *390*, 396–409. [CrossRef]
- Vance, M.E.; Kuiken, T.; Vejerano, E.P.; McGinnis, S.P.; Hochella, M.F., Jr.; Rejeski, D.; Hull, M.S. Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. *Beilstein J. Nanotechnol.* 2015, *6*, 1769–1780. [CrossRef] [PubMed]
- Sendra, M.; Yeste, M.P.; Gatica, J.M.; Moreno-Garrido, I.; Blasco, J. Direct and indirect effects of silver nanoparticles on freshwater and marine microalgae (*Chlamydomonas reinhardtii* and *Phaeodactylum tricornutum*). *Chemosphere* 2017, 179, 279–289. [CrossRef] [PubMed]
- 33. Islam, M.A.; Blasco, J.; Araújo, C.V.M. Spatial avoidance, inhibition of recolonization and population isolation in zebrafish (*Danio rerio*) caused by copper exposure under a non-forced approach. *Sci. Total Environ.* **2019**, *653*, 504–511. [CrossRef]
- Rosa, R.; Moreira-Santos, M.; Lopes, I.; Picado, A.; Mendonça, F.; Ribeiro, R. Development and sensitivity of a 12-h laboratory test with *Daphnia magna* Straus based on avoidance of pulp mill effluents. *Bull. Environ. Contam. Toxicol.* 2008, *81*, 464–469. [CrossRef] [PubMed]
- 35. Rosa, R.; Materatski, P.; Moreira-Santos, M.; Sousa, J.P.; Ribeiro, R. A scaled-up system to evaluate zooplankton spatial avoidance and the population immediate decline concentration. *Environ. Toxicol. Chem.* **2012**, *31*, 1301–1305. [CrossRef] [PubMed]
- 36. Venâncio, C.; Ribeiro, R.; Lopes, I. Active emigration from climate change-caused seawater intrusion into freshwater habitats. *Environ. Pollut.* **2020**, *258*, 113805. [CrossRef] [PubMed]
- Mena, F.; González-Ortegón, E.; Solano, K.; Araújo, C.V.M. The effect of the insecticide diazinon on the osmoregulation and the avoidance response of the white leg shrimp (*Penaeus vannamei*) is salinity dependent. *Ecotoxicol. Environ. Saf.* 2020, 206, 111364. [CrossRef] [PubMed]
- Moreira, R.A.; Araújo, C.V.M.; da Silva Pinto, T.J.; da Silva, L.C.M.; Goulart, B.V.; Viana, N.P.; Montagner, C.C.; Fernandes, M.N.; Espindola, E.L.G. Fipronil and 2, 4-D effects on tropical fish: Could avoidance response be explained by changes in swimming behavior and neurotransmission impairments? *Chemosphere* 2021, 263, 127972. [CrossRef]
- Araújo, C.V.M.; Moreira-Santos, M.; Ribeiro, R. Stressor-driven emigration and recolonisation patterns in disturbed habitats. *Sci. Total Environ.* 2018, 643, 884–889. [CrossRef]
- 40. Araújo, C.V.M.; González-Ortegón, E.; Pintado-Herrera, M.G.; Biel-Maeso, M.; Lara-Martín, P.A.; Tovar-Sánchez, A.; Blasco, J. Disturbance of ecological habitat distribution driven by a chemical barrier of domestic and agricultural discharges: An experimental approach to test habitat fragmentation. *Sci. Total Environ.* **2019**, *651*, 2820–2829. [CrossRef]
- 41. Raimondo, S.; Vivian, D.N.; Delos, C.; Barron, M.G. Protectiveness of species sensitivity distribution hazard concentrations for acute toxicity used in endangered species risk assessment. *Environ. Toxicol. Chem.* **2008**, *27*, 2599–2607. [CrossRef]
- 42. Zhao, J.; Chen, B. Species sensitivity distribution for chlorpyrifos to aquatic organisms: Model choice and sample size. *Ecotoxicol. Environ. Saf.* **2016**, *125*, 161–169. [CrossRef] [PubMed]
- 43. Arnold, W.R.; Cotsifas, J.S.; Ogle, R.S.; DePalma, S.G.; Smith, D.S. A comparison of the copper sensitivity of six invertebrate species in ambient salt water of varying dissolved organic matter concentrations. *Environ. Toxicol. Chem.* **2010**, *29*, 311–319. [CrossRef]
- 44. Rathnayake, I.V.N.; Megharaj, M.; Krishnamurti, G.S.R.; Bolan, N.S.; Naidu, R. Heavy metal toxicity to bacteria—Are the existing growth media accurate enough to determine heavy metal toxicity? *Chemosphere* **2013**, *90*, 1195–1200. [CrossRef]
- 45. Hooper, M.J.; Ankley, G.T.; Cristol, D.A.; Maryoung, L.A.; Noyes, P.D.; Pinkerton, K.E. Interactions between chemical and climate stressors: A role for mechanistic toxicology in assessing climate change risks. *Environ. Toxicol. Chem.* 2013, *32*, 32–48. [CrossRef]

Could contamination avoidance be an endpoint that protects the environment? An overview on how species respond to copper, glyphosate and silver nanoparticles

M. Antonella Alcívar, Marta Sendra, Daniel C.V.R. Silva, Enrique González-Ortegón, Julián Blasco, Ignacio Moreno-Garrido and Cristiano V.M. Araújo

Group	Species	Responses /Endpoint	Classification of the ecotoxicological responses	EC50 (μg/L)	References
Freshwater species			•		
Bacteria	Pseudomonas fluorescens	Respirometry	Physiological	56,100	Pérez-García et al., 1993
Fungi	Saccharomyces cerevisiae	Respirometry	Physiological	29,300	Pérez-García et al., 1993
Rotifers	Brachionus calyciflorus	Swimming alterations: Speed	Behavioral	24.2	Charoy and Janssen, 1999
		Swimming alterations: Periods of swimming	Behavioral	20.8	Charoy and Janssen, 1999
		Filtration rate	Feeding	10.75	Ferrando and Andreu, 1993
_		Ingestion rate	Feeding	13.25	Ferrando and Andreu, 1993
	Lecane hamata	Esterases-inhibition	Biochemical	210	Pérez-Legaspi et al., 2002
_		Mortality	Mortality/Immobilization	230	Pérez-Legaspi et al., 2002
	Lecane luna	Esterases-inhibition	Biochemical	620	Pérez-Legaspi et al., 2002
		Mortality Mortality/Immobilization		60	Pérez-Legaspi et al., 2002
	Lecane quadridentata	Esterases-inhibition	Biochemical	1	Pérez-Legaspi et al., 2002
		Mortality	Mortality/Immobilization	330	Pérez-Legaspi et al., 2002
Microalgae	Euglena gracilis	Motility	Behavioral	23,400	Ahmed and Häder, 2010
-		Growth inhibition	Growth/Reproduction	1800	Girling et al., 2000
_	Selenastrum capricornutum	Cel division rate inhibition	Growth/Reproduction	6	Franklin et al., 2001
	Chlorella sp.	Cel division rate inhibition	Growth/Reproduction	6	Franklin et al., 2001
	Chlamydomonas reinhardi	Growth inhibition	Growth/Reproduction	79	Girling et al., 2000
<u>-</u>	Scenedesmus subspicatus	Growth inhibition	Growth/Reproduction	120	Girling et al, 2000
	Scenedesmus quadricauda	Decrease in the surface area	Growth/Reproduction	275.5	Fawaz et al., 2019
<u>-</u>		Cell density	Growth/Reproduction	14.29	Fawaz et al., 2019
	Ankistrodesmus angustus	Decrease in the surface area	Growth/Reproduction	75.65	Fawaz et al., 2019
_		Cell density	Growth/Reproduction	720.3	Fawaz et al., 2019
	Oscillatoria prolifera	Decrease in the surface area	Growth/Reproduction	50.17	Fawaz et al., 2019
_		Cell density	Growth/Reproduction	50.17	Fawaz et al., 2019
	Aphanizomenon gracile	Population growth	Growth/Reproduction	64	Lüderitz and Nicklish, 1989
	Oscillatoria redekei	Population growth	Growth/Reproduction	80	Lüderitz and Nicklish, 1989
	Chlorella autotrophyca	Population growth	Growth/Reproduction	9,6	Moreno-Garrido et al., 2000
		Population growth	Growth/Reproduction	19,3	Moreno-Garrido et al., 2000

Table S1. copper.

Coppods Mesocyclogy elegizants Inhibition Growth/Reproduction 25 Word and Put. 2004 Cladoscera Resonal longizatios Motility Morality/Inmobilization 14 Kovivis et al., 1992 Ceriodaphia dubia Immobilization Morality/Inmobilization 13 Kovivis et al., 2003 Daphnia anbiga Immobilization Morality/Inmobilization 6.5 Harmon et al., 2003 Daphnia galectai Motility Morality/Inmobilization 6.5 Lopes et al., 2004 Daphnia galectai Motility Morality/Inmobilization 6.1 Lopes et al., 2004 Daphnia magna Motility Morality/Inmobilization 5.1 Destamphicles et al., 2004 Daphnia magna Motility Morality/Inmobilization 5.1 Destamphicles et al., 2003 Janseen Terrando and Andrea, 1993 Janseen 2002 Janseen 2002 Janseen 2002 Daphnia pales Survival Morality/Inmobilization 5.0 Cestrande and Andrea, 1993 Davahois pales Survival Morality/Inmobilization 5.0 Clenes et al., 2019			Population growth	Growth/Reproduction	38,3	Moreno-Garrido et al., 2000
Chabacera Resinant longitoristis Motility Mortality/monohilization 1.4 Kovistion et al., 2016 Ceriodaghnia contati Mortality/Immoshilization 1.6 Hamon et al., 2016 Ceriodaghnia tabuta Mortality/Immoshilization 1.6 Hamon et al., 2020 Daphnia ambigua Mortality/Immoshilization 5.3 Koristo et al., 1992 Daphnia ambigua Mortality/Immoshilization 6.5 Hamon et al., 2004 Daphnia bangiguina Avoidance Spatial avoidance 6.5 Lapost et al., 2004 Daphnia longiguina Mortality/Immoshilization 5.1 Immosert, 2002 Deschambelaerey Immoser, 2002 Daphnia magna Mortality/Immoshilization 5.1 Immosert, 2002 Ferrandual Andreu, 1993 Imeeds Adeenphelesia unicentulati Survival Mortality/Immoshilization 8.0 Termolo and Andreu, 2019 Imeeds Adeenphelesia unicentulati Survival Mortality/Immoshilization 1.0 2019 Ostracoda Chamydotheca sp. Mortality/Immoshilization 1.0 2019 2019 Strade	Copepods	Mesocyclops pehpeiensis	Inhibition	Growth/Reproduction	25	Wong and Pak, 2004
Ceriodaphia dubia Geriodaphia dubia (Chydores sphaericus) Mortality/Immobilization 16 Harmon et al., 2003 Chydores sphaericus Mortality/Immobilization 3.8 Koirvisse et al., 1920 Daphina gelecuta Mortality/Immobilization 6.5 Harmon et al., 2003 Daphina gelecuta Mortality/Immobilization 6.5 Lepse et al., 2004 Daphina indication and spin and second seco	Cladocera	Bosmina longirostris	Motility	Mortality/Immobilization	1.4	Koivisto et al., 1992
Cortodaphnia dubia Immobilization Mortality/Immobilization Alf. Engrane et al. 2003 Daphnia anbigua Immobilization Mortality/Immobilization 3.3 Koivisao et al. 2004 Daphnia anbigua Mortality/Immobilization 4.1 Koivisao et al. 2004 Daphnia anbigua Mortality/Immobilization 4.1 Koivisao et al. 2004 Daphnia funkoltzi Mortality/Immobilization 5.1 Des Schamphelaere y Junssen. 2002 Daphnia magsa Mortality/Immobilization 5.1 De Schamphelaere y Junssen. 2002 Insection rate Feeding 14.7 Ferrando and Andretu. 1993 Daphnia pulex Mortality/Immobilization 3.4 Koivisa al 1.992. Daphnia pulex Mortality/Immobilization 3.0 Chemeta st al. 2013 Dranectia grands Survival Mortality/Immobilization 3.0 Chemeta st al. 2014 Ostracoda Chamydotheca sp. Mortality/Immobilization 3.0 Chemeta st al. 2019 Strandesia trispinosa Mortality/Immobilization 3.7 Dos Status Lime at al. 2019 Ostracoda Chamydotheca sp. Mort		Ceriodaphnia cornuta	Motility	Mortality/Immobilization	2.92	Bui et al., 2016
Chydories aphaericas Motility Mertality/Immobilization 3.3 Kovisso et al., 1992 Daphnia dongspina Immobilization Motility Mortality/Immobilization 6.53 Harmoo et al., 2003 Daphnia i longspina Avoidince Spatial avoidance 6.5 Lopes et al., 2004 Daphnia i longspina Motility Mortality/Immobilization 6.1 Lopes et al., 2004 Daphnia magna Motility Mortality/Immobilization 5.2 Des Schamphelaere y Daphnia pudex Motility Mortality/Immobilization 3.4 Kovisto et al., 1902 Insects Admosphela pudex Mottality Mortality/Immobilization 3.4 Kovisto et al., 1902 Insects Admosphela pudex Mortality/Immobilization 3.0 Clemente et al., 2013 Transac cophysa Mortality/Immobilization 3.0 Clemente et al., 2014 Transac cophysa Mortality/Immobilization 3.0 Clemente et al., 2014 Transac cophysa Mortality/Immobilization 3.0 Clemente et al., 2014 Dirabisea apohymorupha Filtration ate Edecing all av		Ceriodaphnia dubia	Immobilization	Mortality/Immobilization	4.16	Harmon et al., 2003
Daphaia anbigua Immohilization Mortality/Immohilization 6.53 Harmor et al., 2003 Daphnia longispina Avoidance Spatial avoidance 65 Lopes et al., 2004 Daphnia lumholizi Motility Mortality/Immohilization 60 Lopes et al., 2004 Daphnia lumholizi Motility Mortality/Immohilization 302 Die et al., 2004 Daphnia magna Motility Mortality/Immohilization 31 De Schanghelaere y Japhnia pulex Motility Mortality/Immohilization 34 Kaivisio et al., 1992 Insects Adenophicbia auriculata Survival Mortality/Immohilization 34 Kaivisio et al., 2001 Ostracoda Cillamydotheca sp. Mortality/Immohilization 36 Cillamydotheca sp. 378 Dos Santos Lina et al., 2019 Straides tripinaca Mortality/Immohilization 370 Dos Santos Lina et al., 2019 Straides tripinaca Mortality/Immohilization 370 Dos Santos Lina et al., 2019 Straides tripinaca Mortality/Immohilization 370 Dos Santos Lina et al., 2019 Mortalit		Chydorus sphaericus	Motility	Mortality/Immobilization	3.3	Koivisto et al., 1992
Dephnia galeata Motility Mortality/Immobilization 4.1 Kavisto et al., 1902 Daphnia lambdizi Motility Mortality/Immobilization 3.92 Bui et al., 2004 Daphnia lambdizi Motility Mortality/Immobilization 3.92 Bui et al., 2004 Daphnia magna Mutility Mortality/Immobilization 3.92 De Schamphelaery Daphnia pulex Motility Mortality/Immobilization 3.92 De Schamphelaery Insects Daphnia pulex Motility Mortality/Immobilization 3.02 Ferrando and Andreu, 1993 Insects Adenophica gaudis Survival Mortality/Immobilization 3.01 Chemestes et al., 2013 Ostracoda Chlanydorheca sp. Mortality Mortality/Immobilization 3.01 Chemestes et al., 2013 Strandesia trispinosa Mortality Mortality/Immobilization 3.01 Chemestes et al., 2013 Distave Dreissena polynopha Filtration rate Feeding 4.1 Krark et al., 1994 Strandesia trispinosa Mortality Mortality/Immobilization 1.00 <t< td=""><td></td><td>Daphnia ambigua</td><td>Immobilization</td><td>Mortality/Immobilization</td><td>6.53</td><td>Harmon et al., 2003</td></t<>		Daphnia ambigua	Immobilization	Mortality/Immobilization	6.53	Harmon et al., 2003
Daphnia longispina Avoidance Spatial avoidance 65 Lopes et al., 2004 Daphnia lumbolizi Motility Mortality/Immobilization 3.92 But et al., 2004 Daphnia magna Motility Mortality/Immobilization 3.92 But et al., 2004 Daphnia magna Motility Mortality/Immobilization 3.92 De Schamphelener y Inasse, 2002 Ingestion rate Feeding 14, 75 Ferrando and Andreu, 1993 Daphnia pulex Mortality/Immobilization 3.4 Kaviviso et al., 1992 Insects Adenophtebra curiculatu Survival Mortality/Immobilization 3.4 Kaviviso et al., 2014 Ostracoda Citlampdutheca sp. Mortality/Immobilization 3.0 Chements et al., 2019 Ostracoda Citlampdutheca sp. Mortality/Immobilization 3.70 Does Santos Lina et al., 2019 Bivalve Dreissena polymorpha Filtration rate Feeding 11 Clavaret et al., 2017 Macrobrachium amazonicum Survival Mortality/Immobilization 7.0 Deos Santos Lina et al., 2019 Bivalve Dre		Daphnia galeata	Motility	Mortality/Immobilization	4.1	Koivisto et al., 1992
Muliity Morality/Immobilization 1.0ps et al., 2004 Daphnia humiolet: Motility Mortality/Immobilization 5.1 Just et al., 2016 Daphnia nagea Motility Mortality/Immobilization 5.1 Just et al., 2016 Dephnia nagea Motility Mortality/Immobilization 5.1 Just et al., 2016 Insects Adenophlebia auriculata Survival Mortality/Immobilization 1.4 Koivisto et al., 1992 Insects Adenophlebia auriculata Survival Mortality/Immobilization 1.6 Certhadre and Palance Dranella grandits Survival Mortality/Immobilization 1.0 Clearnet et al., 2017 Ostracoda Chlumydothecu sp. Mortality Mortality/Immobilization 1.7 Clearnet et al., 2019 Bivalve Dressena ophynorpha Filtration rate Feeding 41 Krak et al., 2017 Macrobrachium pathatandes Survival Mortality/Immobilization 7.50 Dos Satoles Lina et al., 2017 Macrobrachium pathatandes Survival Mortality/Immobilization 7.0 Vera-Vera et al., 2017 <		Daphnia longispina	Avoidance	Spatial avoidance	65	Lopes et al., 2004
Daphnia hambolizi Motility Mortality/Immobilization 3.2 Bat et al., 2016 Daphnia magna Motility Mortality/Immobilization 5.1 De Schamphelaers y Jamsen, 2002 Francel and and Andrey Ingestion rate Feeding 21.2 Fertando and Andrey Insects Adenaphlebia auriculata Survival Mortality/Immobilization 3.4 Koivato et al., 1993 Insects Adenaphlebia auriculata Survival Mortality/Immobilization 1.0 Gerhardt and Pahmer, 1993 Ostracoda Chlumydoheca sp. Mortality/Immobilization 3.0 Clumstots Lime et al., 2013 Ostracoda Chlumydoheca sp. Mortality/Immobilization 7.0 Poss Stantos Lime et al., 2013 Bivalve Deriestang polynorpha Fiftration rate Feeding 1.6 Stantos Lime et al., 2013 Shrimps Alycephyra desmarestii Survival Mortality/Immobilization 7.0 Poss Stantos Lime et al., 2017 Macrobrachum pantancleuse Survival Mortality/Immobilization 1.7 Crass et al., 2017 Marobrachumpotene Survival M			Motility	Mortality/Immobilization	60	Lopes et al., 2004
Daphnia magna Motility Mortality/Immobilization 5.1 Jussen, 2002 Filtration rate Feeding 14,75 Firando and Andreu, 1993 Ingestion rate Feeding 22.5 Formado and Andreu, 1993 Insects Adenophlebia auriculata Survival Mortality/Immobilization 3.4 Koivisto et al., 1992 Insects Adenophlebia auriculata Survival Mortality/Immobilization 3.0 Clements et al., 2013 Ostracoda Chlamydoheca sp. Mortality Mortality/Immobilization 3.7 2019 Ostracoda Chlamydoheca sp. Mortality Mortality/Immobilization 7.7 Dos Statos Linn et al., 2013 Shrimps Apyrade hanexisti Avoidance Spatial avoidance 70 Vera-Vera et al., 2019 Macrobrachum amazonicum Survival Mortality/Immobilization 1.7 Clearwater et al., 2013 Macrobrachum amazonicum Survival Mortality/Immobilization 1.8 6 Macrobrachum amazonicum Survival Mortality/Immobilization 1.8 6 Macrobrachu		Daphnia lumholtzi	Motility	Mortality/Immobilization	3.92	Bui et al., 2016
Filtration rate Feeding 14.75 Ferrando and Andreu. 1993 Ingestion rate Feeding 22.5 Ferrando and Andreu. 1993 Daphnia pulex Motility Mortality/Immobilization 3.4 Koivisto et al., 1992 Insects Adenophlebia auriculata Survival Mortality/Immobilization 3.0 Clements et al., 2013 Insects Adenophlebia auriculata Survival Mortality/Immobilization 3.0 Clements et al., 2013 Ostracoda Chlanydothca sp. Mortality Mortality/Immobilization 7.0 2019 Strandesia trispinosa Mortality Mortality/Immobilization 7.0 2019 Bivalve Dreissena polymorpha Filtration rate Feeding 41 Kraak et al., 2019 Macrobrachium amazonicum Survival Mortality/Immobilization 7.0 2019 Macrobrachium patratalenee Survival Mortality/Immobilization 7.0 Soares et al., 2017 Macrobrachium amazonicum Survival Mortality/Immobilization 7.7 Clearester Macrobrachium patratalenee		Daphnia magna	Motility	Mortality/Immobilization	5.1	De Schamphelaere y Janssen, 2002
Ingestion rate Feeding 22.5 Ferrando and Andrey. 1993 Daphnia pulex Motiliy Mortality/Immobilization 3.4 Koivisto et al., 1992 Insects Adenophlebia auriculata Survival Mortality/Immobilization 3.0 Clements et al., 2013 Draneta cophysa Mortality/Immobilization 3.0 Clements et al., 2013 2019 Ostracoda Chlanydotheca sp. Mortality/Immobilization 378 Dos Santos Lima et al., 2013 Divisition Strandesia trispinosa Mortality/Immobilization 750 Dos Santos Lima et al., 2019 Bivalve Dreissena polymorpha Filtration rate Feeding 41 Kraak et al., 1994 Shrimps Ayaephyra desmarestii Avoidance Spatial avoidance 70 Vera-Vera et al., 2019 Macrobrachium amazonicum Survival Mortality/Immobilization 10.010 Soares et al., 2017 Amphibinas Anyaephyra desmarestii Avoidance Spatial avoidance 70 Vera-Vera et al., 2019 Macrobrachium mazonicum Survival Mortality/Immobilization 10.010 <t< td=""><td></td><td></td><td colspan="2">Filtration rate Feeding</td><td>14.75</td><td>Ferrando and Andreu, 1993</td></t<>			Filtration rate Feeding		14.75	Ferrando and Andreu, 1993
Duphnia pulex Motility Motality/Immobilization 3.4 Koivisto et al., 1992 Insects Adenophlebia auriculata Survival Mortality/Immobilization 180 Gerhardt and Palmer, 1998 Drunella grandis Survival Mortality/Immobilization 30 Clements et al. 2013 Ostracoda Chlamydoheca sp. Mortality Mortality/Immobilization 750 Dos Samos Lima et al., 2019 Bivalve Dreissena polymorpha Filtration rate Feeding 41 Kraak et al., 1994 Shrimps Aycophyra desmarcstit Novidance Spatial avoidance 70 Vera Vera et al., 2019 Macrobrachium pantaneleus Survival Mortality/Immobilization 1.7 Clearwater et al., 2017 Macrobrachium pantaneleus Survival Mortality/Immobilization 10.7 Soares et al., 2017 Amphibians Ambystoma quacum Mortality Mortality/Immobilization 17.8 Weir et al., 2019 Ampstoma quacum Mortality Mortality/Immobilization 85 Herkovirs y Helguero, 1988. Epidalee calamita Larval mortality Mortality/			Ingestion rate	Feeding	22.5	Ferrando and Andreu, 1993
Insects Adenophlebia auriculata Survival Mortality/Immobilization 180 Gerbardt and Palmer, 1998 Drunella grandis Survival Mortality/Immobilization 3.0 Clements et al., 2013 Ostracoda Chlanydotheca sp. Mortality Mortality/Immobilization 3.78 Dos Samtos Lima et al., 2019 Bivalve Dreissena polymorpha Filtration rate Feeding 41 Kraak et al., 1994 Bivalve Dreissena polymorpha Filtration rate Feeding 41 Kraak et al., 2019 Shrimps Ayaephyra desmarestii Avoidance Spatial avoidance 70 Vera-Vera et al., 2019 Macrobrachium pantanelense Survival Mortality/Immobilization 1.7 Clearwater et al., 2019 Macrobrachium pantanelense Survival Mortality/Immobilization 18.06 Weir et al., 2019. Ampstoma talpoideam Mortality Mortality/Immobilization 18.76 Weir et al., 2019. Ampstoma talpoideam Mortality Mortality/Immobilization 18.86 Gercia-Muñoz et al., 2019. Ampstoma talpoideam Mortality		Daphnia pulex	Motility	Mortality/Immobilization	3.4	Koivisto et al., 1992
Drumella grandis Survival Mortality/Immobilization O. Clements et al., 2013. Dos Santos Lima et al., 2019 Ostracoda Chlamydotheca sp. Mortality Mortality/Immobilization 611 Dos Santos Lima et al., 2019 Bivalve Dreissena polymorpha Filtration rate Feeding 41 Kraak et al., 1994 Echyridell memclessi Survival Mortality/Immobilization 750 Dos Santos Lima et al., 2019 Shrimps Atyaephyra desmarestii Survival Mortality/Immobilization 70 Vera-Vera et al., 2019 Macrobrachium amazonicum Survival Mortality/Immobilization 10.010 Soares et al., 2017 Amphibians Anyaephyra desmarestii Avoidance Spatial avoidance 70 Vera-Vera et al., 2019 Macrobrachium panzonicum Survival Mortality/Immobilization 10.010 Soares et al., 2017 Amphibians Ampystoma opacum Mortality Mortality/Immobilization 18.76 Weir et al., 2019. Amphystoma igrinum Mortality Mortality/Immobilization 31.85 Garcia-Muñoz et al., 2019. 1998. E	Insects	Adenophlebia auriculata	Survival	Mortality/Immobilization	180	Gerhardt and Palmer, 1998
Tramea cophysa Mortality Mortality/Immobilization 611 Des Santos Lima et al., 2019 Ostracoda Chlamydotheca sp. Mortality Mortality/Immobilization 378 Dos Santos Lima et al., 2019 Bivalve Dreissena polymorpha Filtration rate Feeding 41 Kraak et al., 1994 Echyridella menziesti Survival Mortality/Immobilization 7.0 Dos Santos Lima et al., 2019 Shrimps Atyacphyra desmarziesti Survival Mortality/Immobilization 7.0 Vera-Vera et al., 2019 Macrobrachium pantanalense Survival Mortality/Immobilization 2.7 Soares et al., 2017 Amphibians Ambystoma apacum Mortality Mortality/Immobilization 4.8 Weir et al., 2019. Ambystoma apacum Mortality Mortality/Immobilization 4.8 Weir et al., 2019. Ambystoma apacum Mortality Mortality/Immobilization 3.5 Weir et al., 2019. Bufo arenarum Mortality Mortality/Immobilization 3.6 Garcia-Muñoz et al., 2019. Bufo arenarum Mortality Mortality/Immobiliza		Drunella grandis	Survival	Mortality/Immobilization	3.0	Clements et al., 2013
Ostracoda Chlamydotheca sp. Mortality Mortality Mortality/Immobilization 378 Dos Santos Lima et al., 2019 Bivalve Dreissena polymorpha Filtration rate Feeding 41 Kraak et al., 1994 Bivalve Dreissena polymorpha Filtration rate Feeding 41 Kraak et al., 2019 Shrimps Alyaephyra desmarestii Avoidance Spatial avoidance 70 Vera-Vera et al., 2019 Macrobrachium pantanalense Survival Mortality/Immobilization 1.7 Clearwater et al., 2017 Amphibians Ambystoma goacum Mortality/Immobilization 2.7 Soares et al., 2017 Amphibians Ambystoma goacum Mortality Mortality/Immobilization 2.7 Soares et al., 2017 Amphibians Ambystoma goacum Mortality Mortality/Immobilization 3.7 Soares et al., 2019 Ambystoma tigrinum Mortality Mortality/Immobilization 3.8 Strice-AMuñoz et al., 2019 Bufo arenarum Mortality Mortality/Immobilization 3.8 Greia-Muñoz et al., 2014 Epidalea calamita <td></td> <td>Tramea cophysa</td> <td>Mortality</td> <td>Mortality/Immobilization</td> <td>611</td> <td>Dos Santos Lima et al., 2019</td>		Tramea cophysa	Mortality	Mortality/Immobilization	611	Dos Santos Lima et al., 2019
Strandesia trispinosa Mortality Mortality/Immobilization 750 Does Santos Lina et al., 1994 Bivalve Dreissena polymorpha Filtration rate Feeding 41 Kraak et al., 1994 Echyridella menziesii Survival Mortality/Immobilization 1.7 Clearvater et al., 2019 Macrobrachium gatomic adsomanti adsociance Spatial avoidance 50 Araújo et al., 2019 Macrobrachium pantanalense Survival Mortality/Immobilization 2.7 Soares et al., 2017 Amphibians Ambystoma opacum Mortality Mortality/Immobilization 2.7 Soares et al., 2019. Amphystoma talpoideum Mortality Mortality/Immobilization 3.7 Weir et al., 2019. Ampystoma talpoideum Mortality Mortality/Immobilization 3.3 Weir et al., 2019. Bufo arenarum Mortality Mortality/Immobilization 3.8 Garcia-Muñoz et al., 2009 Lithobates catesbeianus Avoidance Spatial avoidance 101 Araújo et al., 2014 Pelophylax perezi Avoidance Spatial avoidance 102 Araújo et al., 2014	Ostracoda	Chlamydotheca sp.	Mortality	Mortality/Immobilization	378	Dos Santos Lima et al., 2019
Bivalve Dreitsena polymorpha Filtration rate Feeding 41 Kraak et al., 1994 Echyridella merziesii Survival Mortality/Immobilization 1.7 Clearvater et al., 2019 Macrobrachium amazonicum Survival Mortality/Immobilization 10.010 Soares et al., 2017 Macrobrachium pantanalense Survival Mortality/Immobilization 12.7 Soares et al., 2017 Amphystoma talpoideum Mortality/Mortality/Immobilization 18.76 Weir et al., 2019 Ambystoma talpoideum Mortality/Mortality/Immobilization 18.76 Weir et al., 2019 Ambystoma tigrinum Mortality Mortality/Immobilization 85.3 Weir et al., 2019 Ambystoma tigrinum Mortality Mortality/Immobilization 85.3 Weir et al., 2019 Bufo arenarum Mortality Mortality/Immobilization 85 Herkovits y Helguero, 1998. Epidalea calamita Larval mortality Mortality/Immobilization 81.85 Garcia-Muñoz et al., 2019 Larval mortality Mortality/Immobilization 13.85 Garcia-Muñoz et al., 2014 Pelophylax perezi <td></td> <td>Strandesia trispinosa</td> <td>Mortality</td> <td>Mortality/Immobilization</td> <td>750</td> <td>Dos Santos Lima et al., 2019</td>		Strandesia trispinosa	Mortality	Mortality/Immobilization	750	Dos Santos Lima et al., 2019
Entrymeter Survival Mortality/Immobilization 1.7 Clearwater et al., 2019 Mortality/Immobilization Avapphyra desmarestii Avoidance Spatial avoidance 50 Aratijo et al., 2019 Macrobrachium amazonicum Survival Mortality/Immobilization 10,010 Soares et al., 2017 Amphibians Ambystoma opacum Mortality/Immobilization 2.7 Soares et al., 2017 Amphibians Ambystoma opacum Mortality/Immobilization 3.7 Soares et al., 2019 Ambystoma talpoideum Mortality Mortality/Immobilization 3.5.3 Weir et al., 2019. Ambystoma talpoideum Mortality Mortality/Immobilization 3.5.3 Weir et al., 2019. Bufo arenarum Mortality Mortality/Immobilization 3.8.5 García-Muñoz et al., 2009 Larval mortality Mortality/Immobilization 31.8.5 García-Muñoz et al., 2014 Leptodactylus larrans Avoidance Spatial avoidance 101 Araújo et al., 2014 Leptodactylus larrans Avoidance Spatial avoidance 102 Araújo et al., 2014 L	Bivalve	Dreissena polymorpha	Filtration rate	Feeding	41	Kraak et al., 1994
Shrimps Atycidance Spatial avoidance 70 Vera Vera Vera et al., 2019 Macrobrachium amazonicum Survival Mortality/Immobilization 10,010 Soares et al., 2017 Macrobrachium pantanalense Survival Mortality/Immobilization 12,7 Soares et al., 2017 Amphibians Ambystoma opacum Mortality Mortality/Immobilization 18,76 Weir et al., 2019. Amphibians Ambystoma talpoideum Mortality Mortality/Immobilization 18,76 Weir et al., 2019. Mortality/Immobilization 35.3 Weir et al., 2019. 198.8 198.8 Epidalea calamita Larval mortality Mortality/Immobilization 85 Herkovits y Helguero, 1998. Larval mortality Mortality/Immobilization 31.85 Garcia-Muñoz et al., 2019. 2009 Garcia-Muñoz et al., 2014 Larval mortality Mortality/Immobilization 43.80 Garcia-Muñoz et al., 2014. Leptotactylus latrans Avoidance Spatial avoidance 101 Araújo et al., 2014 Leptotactylus latrans Avoidance Spatial avoidance 178	C1'	Echyridella menziesii	Survival	Mortality/Immobilization	1./	Clearwater et al., 2013
Macrobrachium amazonicum Survival Mortality/Immobilization 0.010 Soares et al., 2017 Macrobrachium pantanalense Survival Mortality/Immobilization 2.7 Soares et al., 2017 Amphibians Ambystoma opacum Mortality Mortality/Immobilization 18.76 Weir et al., 2019. Amphystoma talpoideum Mortality Mortality/Immobilization 47.88 Weir et al., 2019. Ambystoma talpoideum Mortality Mortality/Immobilization 47.88 Weir et al., 2019. Bufo arenarum Mortality Mortality/Immobilization 85. Herkovits y Hclguero, 1998. Garcia-Muñoz et al., Danio renarum Mortality/Immobilization 87.60 Garcia-Muñoz et al., 2009. Larval mortality Mortality/Immobilization 87.60 Garcia-Muñoz et al., 2009. 2009 Larval mortality Mortality/Immobilization 87.80 Garcia-Muñoz et al., 2014. 2009 Lithobates catesbeianus Avoidance Spatial avoidance 101 Araújo et al., 2014 Leptodactylus latrans Avoidance Spatial avoidance 178 Araújo et al.	Shrimps	Atyaepnyra aesmarestit	Avoidance	Spatial avoidance	/0 50	Arravia et al., 2019
Macrobrachian and controlm Survival Mortality/Immobilization 12,07 Soares et al., 2017 Amphibians Ambystoma opacum Mortality Mortality/Immobilization 18,76 Weir et al., 2019. Amphibians Ambystoma talpoideum Mortality Mortality/Immobilization 18,76 Weir et al., 2019. Ambystoma tagrinum Mortality Mortality/Immobilization 85.3 Weir et al., 2019. Bufo arenarum Mortality Mortality/Immobilization 87.60 Garcia-Muñoz et al., 2009 Epidalea calamita Larval mortality Mortality/Immobilization 87.60 Garcia-Muñoz et al., 2009 Larval mortality Mortality/Immobilization 87.60 Garcia-Muñoz et al., 2009 Larval mortality Mortality/Immobilization 43.80 2009 Carcia-Muñoz et al., 2014 Araújo et al., 2014 Araújo et al., 2014 Lepodacrylus larrans Avoidance Spatial avoidance 102 Araújo et al., 2014 Rhinella granulosa Mortality Mortality/Immobilization 50.02 Franco-de-Sá and Val., 2014 Scinax ruber Mortality </td <td></td> <td>Maanobuaahium amazoniaum</td> <td>Avoluance</td> <td>Mortality/Immobilization</td> <td>10.010</td> <td>Sector Alaujo et al., 2019</td>		Maanobuaahium amazoniaum	Avoluance	Mortality/Immobilization	10.010	Sector Alaujo et al., 2019
Amphibians Machine parametrize Solid Virtuit Mortality Mortality/Immobilization 12.76 Weir et al., 2019. Ambystoma talpoideum Mortality Mortality/Immobilization 18.76 Weir et al., 2019. Ambystoma talpoideum Mortality Mortality/Immobilization 35.3 Weir et al., 2019. Ambystoma tigrinum Mortality Mortality/Immobilization 35.3 Weir et al., 2019. Bufo arenarum Mortality Mortality/Immobilization 85 Herkovits y Helguero, 1998. Epidalea calamita Larval mortality Mortality/Immobilization 87.60 Garcia-Muñoz et al., 2009 Larval mortality Mortality/Immobilization 31.85 2009 Garcia-Muñoz et al., 2014 Legrodactylus latrans Avoidance Spatial avoidance 101 Araújo et al., 2014 Leptodactylus latrans Avoidance Spatial avoidance 128.47 2009 Lithobates catesbeianus Avoidance Spatial avoidance 128.47 2014 Reportacacida Mortality Mortality/Immobilization 23.48 Franco-de-Sá and Val, 2014		Macrobrachium pantanalansa	Survival	Mortality/Immobilization	2.7	Soares et al. 2017
Implified as Interpretation Interpr	Amphibians	Ambustoma opacum	Mortality	Mortality/Immobilization	18.76	Weir et al. 2017
Interpretation Mortality	7 inpinoians	Ambystoma talpoideum	Mortality	Mortality/Immobilization	47.88	Weir et al. 2019.
Bufo arenarumMortalityMortality/Immobilization85Herkovits y Helguero, 1998.Epidalea calamitaLarval mortalityMortality/Immobilization85.Garcia-Muñoz et al., 2009Larval mortalityMortality/Immobilization31.85Garcia-Muñoz et al., 2009Larval mortalityMortality/Immobilization31.85Garcia-Muñoz et al., 2009Lithobates catesbeianusAvoidanceSpatial avoidance101Araújo et al., 2014Leptodactylus latransAvoidanceSpatial avoidance102Araújo et al., 2014Pelophylax pereziAvoidanceSpatial avoidance178Araújo et al., 2014Rhinella granulosaMortalityMortality/Immobilization36.37Franco-de-Sá and Val, 2014Scinax ruberMortalityMortality/Immobilization50.02Franco-de-Sá and Val, 2014MortalityMortalityMortality/Immobilization50.02Franco-de-Sá and Val, 2014FishDanio rerioFeeding InhibitionFeeding36Abdel-moneim et al, 2014FishDanio rerioFeeding InhibitionFeeding36Abdel-moneim et al, 2014AvoidanceSpatial avoidance17Silva et al., 20182015AvoidanceSpatial avoidance16Araújo et al., 20182015AvoidanceSpatial avoidance60Araújo et al., 20182015AvoidanceSpatial avoidance60Araújo et al., 20182016AvoidanceSpatial avoidance60Araújo et al., 20192016 <td></td> <td>Ambystoma tigrinum</td> <td>Mortality</td> <td>Mortality/Immobilization</td> <td>35.3</td> <td>Weir et al., 2019.</td>		Ambystoma tigrinum	Mortality	Mortality/Immobilization	35.3	Weir et al., 2019.
Epidalea calamita Larval mortality Mortality/Immobilization 87.60 Garcia-Muñoz et al., 2009 Larval mortality Mortality/Immobilization 31.85 Garcia-Muñoz et al., 2009 Larval mortality Mortality/Immobilization 43.80 Garcia-Muñoz et al., 2009 Lithobates catesbeianus Avoidance Spatial avoidance 101 Araújo et al., 2014 Leptodactylus latrans Avoidance Spatial avoidance 102 Araújo et al., 2014 Pelophylax perezi Avoidance Spatial avoidance 178 Araújo et al., 2014 Scinax ruber Mortality Mortality/Immobilization 36.37 Franco-de-Sá and Val, 2014 Mortality Mortality/Immobilization 50.02 Franco-de-Sá and Val, 2014 2014 Franco-de-Sá and Val, 2014 Franco-de-Sá and Val, 2014 2014 Franco-de-Sá and Val, 2014 2014 Franco-de-Sá and Val, 2014 Mortality Mortality/Immobilization 15.9 Silva et al., 2018 Avoidance Spatial avoidance Spatial avoidance 60 Araújo et al., 2018 Avoidance Spatial avoidance		Bufo arenarum	Mortality	Mortality/Immobilization	85	Herkovits y Helguero,
Larval mortalityMortality/Immobilization31.85García-Muñoz et al., 2009Larval mortalityMortality/Immobilization31.85García-Muñoz et al., 2009Lithobates catesbeianusAvoidanceSpatial avoidance101Araújo et al., 2014Leptodactylus latransAvoidanceSpatial avoidance102Araújo et al., 2014Pelophylax pereziAvoidanceSpatial avoidance102Araújo et al., 2014Rhinella granulosaMortalityMortality/Immobilization23.48Franco-de-Sá and Val, 2014Scinax ruberMortalityMortality/Immobilization36.37Franco-de-Sá and Val, 2014MortalityMortality/Immobilization50.02Franco-de-Sá and Val, 2014FishDanio rerioFeeding InhibitionFeeding36AvoidanceSpatial avoidance15.92014AvoidanceSpatial avoidance17Silva et al., 2018 2014AvoidanceSpatial avoidance89Araújo et al., 2018 2014FishDanio rerioFeeding InhibitionFeeding36AvoidanceSpatial avoidance89Araújo et al., 2018 2014AvoidanceSpatial avoidance89Araújo et al., 2018 2014AvoidanceSpatial avoidance89Araújo et al., 2018 2014MortalityMortality/Immobilization15.9Silva et al., 2018 2014AvoidanceSpatial avoidance89Araújo et al., 2018 2014AvoidanceSpatial avoidance80 <t< td=""><td></td><td>Epidalea calamita</td><td>Larval mortality</td><td>Mortality/Immobilization</td><td>87.60</td><td>García-Muñoz et al.,</td></t<>		Epidalea calamita	Larval mortality	Mortality/Immobilization	87.60	García-Muñoz et al.,
Larval mortalityMortality/Immobilization43.80García-Muñoz et al., 2009Lithobates catesbeianusAvoidanceSpatial avoidance101Araújo et al., 2014Leptodactylus latransAvoidanceSpatial avoidance102Araújo et al., 2014Pelophylax pereziAvoidanceSpatial avoidance102Araújo et al., 2014Rhinella granulosaMortalityMortality/Immobilization23.48Franco-de-Sá and Val, 2014Scinax ruberMortalityMortality/Immobilization36.37Franco-de-Sá and Val, 2014MortalityMortality/Immobilization50.02Franco-de-Sá and Val, 2014Scinax ruberMortalityMortality/Immobilization50.02Franco-de-Sá and Val, 2014MortalityMortality/Immobilization50.02Franco-de-Sá and Val, 2014FishDanio rerioFeeding InhibitionFeeding36AvoidanceSpatial avoidance60Araújo et al., 2018 2015AvoidanceSpatial avoidance89Araújo et al., 2018 AvoidanceAvoidanceSpatial avoidance60Araújo et al., 2018 AvoidanceAvoidanceSpatial avoidance60Araújo et al., 2019 Araújo et al., 2019 AvoidanceAvoidanceSpatial avoidance60Araújo et al., 2018 Araújo et al., 2019 AvoidanceAvoidanceSpatial avoidance60Araújo et al., 2018 Araújo et al., 2018 AvoidanceAvoidanceSpatial avoidance60Araújo et al., 2019 Moreira-Santos et al., 2008<			Larval mortality	Mortality/Immobilization	31.85	García-Muñoz et al.,
Lithobates catesbeianusAvoidanceSpatial avoidance101Araújo et al., 2014Leptodactylus latransAvoidanceSpatial avoidance102Araújo et al., 2014Pelophylax pereziAvoidanceSpatial avoidance178Araújo et al., 2014Rhinella granulosaMortalityMortality/Immobilization23.48Franco-de-Sá and Val, 2014Scinax ruberMortalityMortality/Immobilization36.37Franco-de-Sá and Val, 2014MortalityMortalityMortality/Immobilization50.02Franco-de-Sá and Val, 2014MortalityMortality/Immobilization15.9Franco-de-Sá and Val, 2014FishDanio rerioFeeding InhibitionFeeding36 2015AvoidanceSpatial avoidance17 2014Silva et al., 2018 2015AvoidanceSpatial avoidance89 2014Araújo et al., 2018 2015AvoidanceSpatial avoidance90 2014Islam et al., 2018 2015AvoidanceSpatial avoidance90 2016Islam et al., 2018 2015AvoidanceSpatial avoidance60 2016Araújo et al., 2018 2016AvoidanceSpatial avoidance60 2016Araújo et al., 2019 2016AvoidanceSpatial avoidance16 2008Shuhaimi-Othman et al., 2015			Larval mortality	Mortality/Immobilization	43.80	García-Muñoz et al.,
Lindoutes curesteringAvoidanceSpatial avoidance101Ataújo et al., 2014Leptodactylus latransAvoidanceSpatial avoidance102Araújo et al., 2014Pelophylax pereziAvoidanceSpatial avoidance178Araújo et al., 2014Rhinella granulosaMortalityMortality/Immobilization23.48Franco-de-Sá and Val, 2014Scinax ruberMortalityMortality/Immobilization36.37Franco-de-Sá and Val, 2014MortalityMortality/Immobilization50.02Franco-de-Sá and Val, 2014MortalityMortality/Immobilization15.92014FishDanio rerioFeeding InhibitionFeeding36AvoidanceSpatial avoidance17Silva et al., 2018AvoidanceSpatial avoidance17Silva et al., 2018AvoidanceSpatial avoidance89Araújo et al., 2018AvoidanceSpatial avoidance60Araújo et al., 2018AvoidanceSpatial avoidance90Islam et al., 2018AvoidanceSpatial avoidance60Araújo et al., 2018AvoidanceSpatial avoidance60Araújo et al., 2019AvoidanceSpatial avoidance162008Rasbora sumatranaMortalityMortality/Immobilization5.6Shuhaimi-Othman et al., 2015		Lithobatas catashajamus	Avoidance	Spatial avoidance	101	2009 Arovio et al. 2014
Pelophylax pereziAvoidanceSpatial avoidance102Aradjo et al., 2014Pelophylax pereziAvoidanceSpatial avoidance178Aradjo et al., 2014Rhinella granulosaMortalityMortality/Immobilization23.48Franco-de-Sá and Val, 2014Scinax ruberMortalityMortality/Immobilization36.37Franco-de-Sá and Val, 2014MortalityMortality/Immobilization50.02Franco-de-Sá and Val, 2014MortalityMortality/Immobilization15.9Scinax ruberFishDanio rerioFeeding InhibitionFeeding36AvoidanceSpatial avoidance17Silva et al., 2018AvoidanceSpatial avoidance60Araújo et al., 2018AvoidanceSpatial avoidance89Araújo et al., 2018AvoidanceSpatial avoidance90Islam et al., 2019AvoidanceSpatial avoidance60Araújo et al., 2019AvoidanceSpa		Lantodactylus latrans	Avoidance	Spatial avoidance	101	Araújo et al., 2014
Rhinella granulosaMortalityMortality/Immobilization23.48Franco-de-Sá and Val, 2014Scinax ruberMortalityMortality/Immobilization36.37Franco-de-Sá and Val, 2014MortalityMortality/Immobilization36.37Franco-de-Sá and Val, 2014MortalityMortality/Immobilization50.02Franco-de-Sá and Val, 2014MortalityMortality/Immobilization50.02Franco-de-Sá and Val, 2014FishDanio rerioFeeding InhibitionFeeding36AvoidanceSpatial avoidance17Silva et al., 2018AvoidanceSpatial avoidance60Araújo et al., 2018AvoidanceSpatial avoidance89Araújo et al., 2019AvoidanceSpatial avoidance90Islam et al., 2019AvoidanceSpatial avoidance16Moreira-Santos et al., 2008Rasbora sumatranaMortalityMortality/Immobilization5.6Shuhaimi-Othman et al., 2015		Pelonhylar nerezi	Avoidance	Spatial avoidance	178	Araújo et al. 2014
Rhinella granulosaMortalityMortality/Immobilization23.48Funce 2014Scinax ruberMortalityMortality/Immobilization36.37Franco-de-Sá and Val, 2014MortalityMortality/Immobilization50.02Franco-de-Sá and Val, 2014MortalityMortality/Immobilization50.02Franco-de-Sá and Val, 2014FishDanio rerioFeeding InhibitionFeeding36AvoidanceSpatial avoidance17Silva et al., 2018AvoidanceSpatial avoidance89Araújo et al., 2018AvoidanceSpatial avoidance90Islam et al., 2019AvoidanceSpatial avoidance60Araújo et al., 2019AvoidanceSpatial avoidance60Araújo et al., 2019AvoidanceSpatial avoidance162008Rasbora sumatranaMortalityMortality/Immobilization5.6			Tronunee	Sputial avoidance	170	Franco-de-Sá and Val
Scinax ruberMortalityMortality/Immobilization36.37Franco-de-Sá and Val, 2014MortalityMortality/Immobilization50.02Franco-de-Sá and Val, 2014MortalityMortality/Immobilization15.9Franco-de-Sá and Val, 2014FishDanio rerioFeeding InhibitionFeeding36Abdel-moneim et al, 2015AvoidanceSpatial avoidance17Silva et al., 2018Avaújo et al., 2018AvoidanceSpatial avoidance89Araújo et al., 2019AvoidanceSpatial avoidance90AvoidanceSpatial avoidance90Islam et al., 2019AvoidanceSpatial avoidance16Moreira-Santos et al., 2008Rasbora sumatranaMortalityMortality/Immobilization5.6Shuhaimi-Othman et al., 2015		Rhinella granulosa	Mortality	Mortality/Immobilization	23.48	2014
MortalityMortality/Immobilization50.02Franco-de-Sa and Val, 2014MortalityMortality/Immobilization15.9Franco-de-Sá and Val, 2014FishDanio rerioFeeding InhibitionFeeding36Abdel-moneim et al, 2015AvoidanceSpatial avoidance17Silva et al., 2018AvoidanceSpatial avoidance60Araújo et al., 2018AvoidanceSpatial avoidance89Araújo et al., 2018AvoidanceSpatial avoidance90Islam et al., 2019AvoidanceSpatial avoidance60Araújo et al., 2019AvoidanceSpatial avoidance60Araújo et al., 2019AvoidanceSpatial avoidance60Araújo et al., 2019AvoidanceSpatial avoidance60Araújo et al., 2019AvoidanceSpatial avoidance16Moreira-Santos et al., 2008Rasbora sumatranaMortalityMortality/Immobilization5.6Shuhaimi-Othman et al., 2015		Scinax ruber	Mortality	Mortality/Immobilization	36.37	Franco-de-Sá and Val, 2014
MortalityMortality/Immobilization15.9Franco-de-Sa and Val, 2014FishDanio rerioFeeding InhibitionFeeding36Abdel-moneim et al, 2015AvoidanceSpatial avoidance17Silva et al., 2018AvoidanceSpatial avoidance60Araújo et al., 2018AvoidanceSpatial avoidance89Araújo et al., 2018AvoidanceSpatial avoidance90Islam et al., 2019AvoidanceSpatial avoidance60Araújo et al., 2019AvoidanceSpatial avoidance60Araújo et al., 2019AvoidanceSpatial avoidance60Araújo et al., 2019AvoidanceSpatial avoidance162008Rasbora sumatranaMortalityMortality/Immobilization5.6Shuhaimi-Othman et al., 2015			Mortality	Mortality/Immobilization	50.02	Franco-de-Sá and Val, 2014
FishDanio rerioFeeding InhibitionFeeding36Abdel-moneum et al, 2015AvoidanceSpatial avoidance17Silva et al., 2018AvoidanceSpatial avoidance60Araújo et al., 2018AvoidanceSpatial avoidance89Araújo et al., 2018AvoidanceSpatial avoidance90Islam et al., 2019AvoidanceSpatial avoidance90Islam et al., 2019AvoidanceSpatial avoidance60Araújo et al., 2019AvoidanceSpatial avoidance60Araújo et al., 2019AvoidanceSpatial avoidance162008Rasbora sumatranaMortalityMortality/Immobilization5.6Shuhaimi-Othman et al., 2015			Mortality	Mortality/Immobilization	15.9	2014
AvoidanceSpatial avoidance17Silva et al., 2018AvoidanceSpatial avoidance60Araújo et al., 2018AvoidanceSpatial avoidance89Araújo et al., 2018AvoidanceSpatial avoidance90Islam et al., 2019AvoidanceSpatial avoidance60Araújo et al., 2019AvoidanceSpatial avoidance60Araújo et al., 2019AvoidanceSpatial avoidance60Araújo et al., 2019AvoidanceSpatial avoidance16Moreira-Santos et al., 2008Rasbora sumatranaMortalityMortality/Immobilization5.6Shuhaimi-Othman et al., 2015	Fish	Danio rerio	Feeding Inhibition	Feeding	36	Addel-moneim et al, 2015
AvoidanceSpatial avoidance60Araujo et al., 2018AvoidanceSpatial avoidance89Araújo et al., 2018AvoidanceSpatial avoidance90Islam et al., 2019AvoidanceSpatial avoidance60Araújo et al., 2019AvoidanceSpatial avoidance60Araújo et al., 2019AvoidanceSpatial avoidance16Moreira-Santos et al., 2008Rasbora sumatranaMortalityMortality/Immobilization5.6Shuhaimi-Othman et al., 2015			Avoidance	Spatial avoidance	1/	Silva et al., 2018
AvoidanceSpatial avoidance69Aladjo et al., 2018AvoidanceSpatial avoidance90Islam et al., 2019AvoidanceSpatial avoidance60Araújo et al., 2019AvoidanceSpatial avoidance16Moreira-Santos et al., 2008Rasbora sumatranaMortalityMortality/Immobilization5.6Shuhaimi-Othman et al., 2015			Avoidance	Spatial avoidance	80 80	Araujo et al., 2018 Araújo et al. 2018
Avoidance Spatial avoidance 50 Istalli et al., 2019 Avoidance Spatial avoidance 60 Araújo et al., 2019 Avoidance Spatial avoidance 16 Moreira-Santos et al., 2008 Rasbora sumatrana Mortality Mortality/Immobilization 5.6 Shuhaimi-Othman et al., 2015			Avoidance	Spatial avoidance	09 90	Islam et al., 2010
AvoidanceSpatial avoidanceSoAnalys et al., 2019AvoidanceSpatial avoidance162008Rasbora sumatranaMortalityMortality/Immobilization5.6Shuhaimi-Othman et al., 2015			Avoidance	Spatial avoidance	60	Araúio et al 2019
Rasbora sumatrana Mortality Mortality/Immobilization 5.6 Shuhaimi-Othman et al.,			Avoidance	Spatial avoidance	16	Moreira-Santos et al., 2008
		Rasbora sumatrana	Mortality	Mortality/Immobilization	5.6	Shuhaimi-Othman et al.,

	Oncorhynchus mykiss	Mortality	Mortality/Immobilization	35.5	Naddy et al., 2015
	Poecilia reticulata	Mortality	Mortality/Immobilization	37.9	Shuhaimi-Othman et al., 2010
		Avoidance	Spatial avoidance	16	Silva et., 2018
Marine/estuarine species					
Bacteria	Vibrio fisherii (Microtox)	Atenuation of light emission	Physiological	150	Moreno-Garrido et al., 1999
		Atenuation of light emission	Physiological	120	Moreno-Garrido et al., 1999
		Luminescence	Physiological	1300	Toussaint et al., 1995
Protozoa	Pyrocystis lunula	Growth rate inhibition	Growth/Reproduction	85	Stauber et al., 2008
Rotifers	Brachionus plicatilis	Mortality	Mortality/Immobilization	50	Rotini et al., 2018
	Proales similis	Mortality	Mortality/Immobilization	1060	Snell et al., 2019
		Reproduction	Growth/Reproduction	150	Snell et al., 2019
		Ingestion	Feeding	260	Snell et al., 2019
		Hatching	Growth/Reproduction	3400	Snell et al., 2019
Microalgae	Cylindrotheca closterium	Population growth	Growth/Reproduction	27.8	Araújo et al., 2010.
		Chlorophyll fluorescence	Growth/Reproduction	4.7	Araújo et al., 2010.
		Esterase activity	Physiological	7.8	Araujo et al., 2010.
		Population growth	Growth/Reproduction	10.1	Araujo et al.,2010.
	Dunaliella tertiolecta	rate production	Growth/Reproduction	1461	Franklin et al., 2001
	Gonyaulax tamarensis	Immobilisation	Mortality/Immobilization	1	Anderson and Morel, 1978
	Isochrysis aff. galbana Clone I- ISO	Population growth	Growth/Reproduction	0.4	Moreno-Garrido et al., 2000
		Population growth Growth/Reproduction		3.6	Moreno-Garrido et al., 2000
		Population growth	Growth/Reproduction	4.4	Moreno-Garrido et al., 2000
	Nannochloris atomus	Population growth	Growth/Reproduction	16.7	Moreno-Garrido et al., 2000
		Population growth	Growth/Reproduction	27.3	Moreno-Garrido et al., 2000
		Population growth	Growth/Reproduction	46.2	Moreno-Garrido et al., 2000
	Phaeodactylum tricornutum	Population growth	Growth/Reproduction	9	Franklin et al., 2001
		Population growth	Growth/Reproduction	9.8	Moreno-Garrido et al., 2000
		Population growth	Growth/Reproduction	34.4	Moreno-Garrido et al., 2000
		Population growth	Growth/Reproduction	35	Moreno-Garrido et al., 2000
	Rhodomonas salina	rate production	Physiological	30	Moreno-Garrido et al., 1999
		Population growth	Growth/Reproduction	30	1999
Copepods	Acartia tonsa	reproduction /	Growth/Reproduction	9.9	2010
	1 isbe battagliai	Mortality	INIORTALITY/IMMOBILIZATION	83.1	Diz, et al., 2009
		Foundity	Growth/Poproduction	15/	Diz, et al., 2009
		newhorn production	Growth/Reproduction	20.08 21 5	Diz, et al., 2009
	Tigrianus fubrus	Mortality	Mortality/Immobilization	310	Biandolino et al. 2007
	rigi iopus juivus	Moult naupliar reduction	Morphological	55.8	Biandolino et al., 2018
		Development inhibition	Growth/Reproduction	21.7	Biandolino et al 2018
		Mortality	Mortality/Immobilization	120	Rotini et al. 2018
		Release of the molt	Growth/Reproduction	70	Rotini et al., 2018
	Gladioferens pectinatus	Survival	Mortality/Immobilization	170	Charry et al., 2019
	~ *	Larval development ratio	Growth/Reproduction	49.8	Charry et al., 2019
		Realized offspring	Growth/Reproduction	101.5	Charry et al., 2019
		Potential offspring	Growth/Reproduction	127.1	Charry et al., 2019
		Total offspring	Growth/Reproduction	94.3	Charry et al., 2019

Bivalve	Crassostera virginica	Embryo-larval development	Growth/Reproduction	11.2	Arnold et al., 2010
	Mytilus galloprovincialis	Embryo-larval development	Growth/Reproduction	6.28	Arnold et al., 2010
Annelids	Neanthes arenaceodentata	Feeding rate	Feeding	72	Rosen and Miller, 2011.
		Sperm	8		,,
	Ficopomatus enigmaticus	toxicity/Fertilization rate	Growth/Reproduction	80	Oliva et al., 2017
		Mortality	Mortality/Immobilization	80	Rosen v Miller, 2011.
		Embryo-larval		00	100001 9 111101, 20111
Echinodermata	Dendraster excentricus	development	Growth/Reproduction	18.9	Arnold et al., 2010
	Paracentrotus lividus	Embryonic malformations	Morphological	40.65	Morroni et al., 2018.
		Fertilization rate	Growth/Reproduction	20	Rotini et al., 2018.
	Strongylocentrotus purpuratus	Embryo-larval development	Growth/Reproduction	14.8	Arnold et al., 2010
Cnidaria	Acropora aspera	Inhibition in fertilisation	Growth/Reproduction	78	Gissi et al., 2017
	Aiptasia pallida	Inhibited development	Growth/Reproduction	5	Howe et al., 2014
		Mortality	Mortality/Immobilization	23	Howe et al., 2014
	Exaintasia pallida	Reproduction	Growth/Reproduction	23	Trenfiled et al., 2017
		Mortality	Mortality/Immobilization	148	Trenfiled et al., 2017
	Platvevra daedalea	Inhibition in fertilisation	Growth/Reproduction	28	Gissi et al., 2017
	1 (44)8). 4 44644164	Morphological		20	Gorski and Nugegoda
Gastropods	Haliotis rubra	abnormalities	Morphological	7.10	2006
	Nassarius dorsatus	Growth rate	Growth/Reproduction	47	Trenfield et al 2016
Crustacean	Artemia franciscana	Mortality	Mortality/Immobilization	1280	Rotini et al 2018
Crubtuccun	III tenna ji aneiseana	Swimming speed		1200	1000mi 00 uni, 2010
		alteration	Behavioral	638.54	Manfra et al., 2016
	Balanus amphitrite	Survivorship	Mortality/Immobilization	145	Oiu et al., 2005
	Datantis ampirative	Molting success	Growth/Reproduction	97	Qiu et al., 2005
		Survivorship	Mortality/Immobilization	156	Oiu et al., 2005
		Molting success	Growth/Reproduction	91	Qiu et al., 2005
		Survivorship	Mortality/Immobilization	213	Oiu et al., 2005
		Molting success	Growth/Reproduction	129	Qiu et al. 2005
	Frosphaeroma gigas	Immobility	Mortality/Immobilization	6960	Giarratano et al 2007
	Enosphael onna SiSus	Immobility	Mortality/Immobilization	2110	Giarratano et al. 2007
		minicomity		2110	Redondo-Lónez et al
Shrimps	Litopenaeus vannamei	Avoidance	Spatial avoidance	11	(under review)
	Palaemon varians	Avoidance	Spatial avoidance	10	Araújo et al., 2020.
		Avoidance	Spatial avoidance	43	Redondo-López et al. (under review)
	Pengeus monodon Mortality		Mortality/Immobilization	1246	Chen and Lin. 2001
		Mortality	Mortality/Immobilization	3078	Chen and Lin, 2001
		Reduced length increase	Growth/Reproduction	667	Chen and Lin, 2001
		Reduced weight gain	Feeding	600	Chen and Lin, 2001
Crabs	Carcinus maenas	Mortality	Mortality/Immobilization	2000	Nonnote et al., 1993
	Chasmagnathus granulata	Loss of spawning	Growth/Reproduction	163.4	Zapata et al., 2001
Fish	Centropomus parallelus	Mortality	Mortality/Immobilization	1880	Oliveira et al. 2014
1011	Pomatoschistus microns	Mortality	Mortality/Immobilization	568.1	Vieira et al., 2009
	Rachycentron canadum	Avoidance	Spatial avoidance	800	Araújo et al., 2016

Group	Species	Responses /Endpoint	Classification of the ecotoxicological	EC50 mg/L	References
Freshwater species			responses		
Protozoa	Tetrahymena pyriformis	Growth	Growth/Reproduction	29.5	Tsui and Chu, 2003.
Microalgae	Scenedesmus vacuolatus	Growth rate	Growth/Reproduction	4.9	Iummato et al., 2019
		Growth	Growth/Reproduction	4.9	Lummato et al., 2019
	Microcystis aeruginosa	Growth	Growth/Reproduction	6.3	Zhang et el., 2018
		Growth	Growth/Reproduction	0.001486	Hernández-García and Martínez-Jerónimo, 2020
		Growth	Growth/Reproduction	6.7	Lipok et al., 2010
		Growth	Growth/Reproduction	251.4	Lipok et al., 2010
		Growth	Growth/Reproduction	81	Zhang et al., 2018
		Growth	Growth/Reproduction	63	Zhang et al., 2018

	Microcystis aeruginosa (nontoxic)	Growth	Growth/Reproduction	0.441	Smedbol et al., 2017
	Microcystis aeruginosa (toxic)	Growth	Growth/Reproduction	0.446	Smedbol et al., 2017
	Microcystis sp.	Growth	Growth/Reproduction	0.406	Smedbol et al., 2017
	Chlorella pyrenoidosa	Growth	Growth/Reproduction	0.396	Anton et al., 1993.
	Selenastrum capricornutum	Growth inhibition	Growth/Reproduction	5.81	Tsui and Chu, 2003
		Growth	Growth/Reproduction	24.7	Tsui and Chu, 2003
		Growth	Growth/Reproduction	41	Tsui and Chu, 2003
		Growth	Growth/Reproduction	3.92	Tsui and Chu, 2003
	Second commence of the second	Growth	Growth/Reproduction	5.81	I sui and Chu, 2003
	Scenedesmus obliquus	Growth	Growth/Reproduction	0.422	Smedbol et al., 2017
	Chlamydomonas	Olowiii	Glowil/Reploduction	0.415	Silledbol et al., 2017
	reinhardtii	Growth	Growth/Reproduction	0.551	Smedbol et al., 2017
	Cryptomonas obovata	Growth	Growth/Reproduction	0.584	Smedbol et al., 2017
	Ankistrodesmus falcatus	Growth	Growth/Reproduction	0.649	Smedbol et al., 2017
		Growth	Growth/Reproduction	0.001411	Martínez-Jerónimo, 2020
	Pseudokirchneriella subcapitata	Growth	Growth/Reproduction	0.001022	Hernández-García and Martínez-Jerónimo, 2020
	Chlorella vulgaris	Growth	Growth/Reproduction	0.001908	Hernández-García and Martínez-Jerónimo, 2020
		Growth	Growth/Reproduction	0.24	Rodriguez-Gil et al., 2017
		Growth	Growth/Reproduction	0.54	Rodriguez-Gil et al., 2017
		Growth	Growth/Reproduction	118.1	Lipok et al., 2010
		Growth	Growth/Reproduction	292	Lipok et al., 2010
	Scenedesmus incrassatulus	Growth	Growth/Reproduction	0.002702	Hernández-García and Martínez-Jerónimo, 2020
	Raphidocelis subcapitata	Growth	Growth/Reproduction	0.201	Rodriguez-Gil et al., 2017
		Growth	Growth/Reproduction	0.69	Rodriguez-Gil et al., 2017
	Oophila sp.	Growth	Growth/Reproduction	1.98	Rodriguez-Gil et al., 2017
		Growth	Growth/Reproduction	1.61	Rodriguez-Gil et al., 2017
	Chiorella pyrenolaosa	Growth	Growth/Reproduction	0.396	Anton et al., 1993
		Growth	Growth/Reproduction	0.38	Anton et al. 1993
	Spirulina platensis	Growth	Growth/Reproduction	33.1	Lipok et al. 2010
	Nostoc puntiforme	Growth	Growth/Reproduction	42.3	Lipok et al., 2010
		Growth	Growth/Reproduction	598.4	Lipok et al., 2010
	Anabaena catenula	Growth	Growth/Reproduction	2.9	Lipok et al., 2010
		Growth	Growth/Reproduction	256.5	Lipok et al., 2010
	Synechocystis aquatilis	Growth	Growth/Reproduction	89.8	Lipok et al., 2010
		Growth	Growth/Reproduction	164.9	Lipok et al., 2010
	Leptolyngbya boryana	Growth	Growth/Reproduction	4.1	Lipok et al., 2010
		Growth	Growth/Reproduction	246.6	Lipok et al., 2010
	Chlorella kessleri (tolerant strain)	Growth	Growth/Reproduction	55.62	Romero et al., 2011
Insects	Chironomus plumosus	Immobility	Mortality/Immobilizati on	55	Folmar et al., 1979
Cladocera	Ceriodaphnia dubia	Mortality	Mortality/Immobilizati on	5.39	Tsui and Chu, 2003
	Daphnia magna	Mortality	Mortality/Immobilizati on	199	Demetrio et al., 2014
		Mortality	Mortality/Immobilizati on	9.34	Demetrio et al., 2014
		Immobility	Mortality/Immobilizati on	62	Alberdi et al., 1996
	Daphnia spinulata	Immobility	Mortality/Immobilizati on	66	Alberdi et al., 1996
Amphibians	Lymnodynastes dorsalis	Mortality	Mortality/Immobilizati on	3	Mann and Bidwell, 1999
		Mortality	Mortality/Immobilizati on	12	Mann and Bidwell, 1999
	Litoria moorei	Mortality	Mortality/Immobilizati on	2.9	Mann and Bidwell, 1999

		Mortality	Mortality/Immobilizati on	10.4	Mann and Bidwell, 1999
	Heleioporus eyrei	Mortality	Mortality/Immobilizati on	6.3	Mann and Bidwell, 1999
	Crinia insignifera	Mortality	Mortality/Immobilizati on	3.6	Mann and Bidwell, 1999
	Xenopus laevis	Mortality	Mortality/Immobilizati on	9.3	Perkins et al., 2009
	Rana temporaria	Mortality	Mortality/Immobilizati on	11.1	Wagner et al., 2017
		Mortality	Mortality/Immobilizati on	10.4	Wagner et al., 2017
		Mortality	Mortality/Immobilizati on	12.2	Wagner et al., 2017
		Teratogenic Teratogenic	Morphological Morphological	15.7 12.4	Wagner et al., 2017 Wagner et al., 2017
	Rana clamitans	Mortality	Mortality/Immobilizati on	2.7	Wojtaszek et al., 2004
	Rana pipiens	Mortality	Mortality/Immobilizati on	4.25	Wojtaszek et al., 2004
Fish	Salmo gairdneri	Mortality	Mortality/Immobilizati on	140	Folmar et al., 1979
	Pimpehales promelas	Mortality	Mortality/Immobilizati on	97	Folmar et al., 1979
	Ictalurus punctatus	Mortality	Mortality/Immobilizati on	130	Folmar et al., 1979
	Lepomis macrochirus	Mortality	Mortality/Immobilizati on	140	Folmar et al., 1979
	Cyprinus carpio	Mortality	Mortality/Immobilizati on	620	Nešković et al., 1996
		Mortality	Mortality/Immobilizati on	520.77	Ma and Li, 2015
	Danio rerio	Avoidance	Spatial avoidance	0.0015	Mena et al. (<i>under review</i>)
Aquatic Plant	Lemna minor	Inhibition of growth rate	Growth/Reproduction	0.40222	Sikorski et al., 2019
		Inhibition in field (Iy)	Growth/Reproduction	0.47996	Sikorski et al., 2019
		Fresh mass of new fronds	Growth/Reproduction	0.57629	Sikorski et al., 2019
		Dry mass	Growth/Reproduction	2.72935	Sikorski et al., 2019
		Shikimic acid content	Biochemical	0.10985	Sikorski et al., 2019
		Chlorophyll SPAD	Physiological	1.47199	Sikorski et al., 2019
		Chlorophyll a content	Physiological	1.35876	Sikorski et al., 2019
		Chlorophyll b content	Physiological	1.32496	Sikorski et al., 2019
		Carotenoid content	Biochemical	1.69507	Sikorski et al., 2019
		efficiency (Fv/Fm)	Physiological	3.04538	Sikorski et al., 2019
		adenosylmethionine decarboxylase	Biochemical	0.09464	Sikorski et al., 2019
		ornithine decarboxylase	Biochemical	1.44833	Sikorski et al., 2019
		LDC activity - lysine decarboxylase TDC activity -	Biochemical	1.46354	Sikorski et al., 2019
		tyrosine decarboxylase	Biochemical	1.62071	Sikorski et al., 2019
		Tyramine content	Biochemical	0.92612	Sikorski et al., 2019
		Putrescine content	Biochemical	0.86528	Sikorski et al., 2019
		Cadaverine content	Biochemical	0.88894	Sikorski et al., 2019
		Spermidine content	Biochemical	0.78078	Sikorski et al., 2019
		Spermine content	Biochemical	0.90077	Sikorski et al., 2019
		Total biogenic amines content	Biochemical	0.8619	Sikorski et al., 2019
		Peroxidase activity Catalase activity	Biochemical Biochemical	0.57798 0.9971	Sikorski et al., 2019 Sikorski et al., 2019
Marine/estuarine species		· · · · · ·			
Bacteria	Vibrio fischeri	Luminescence	Physiological	17.5	Tsui and Chu, 2003

Protozoa	Euplotes vannus	Growth	Growth/Reproduction	10.1	Tsui and Chu, 2003
Microalgae	Skeletonema costatum	Growth	Growth/Reproduction	1.85	Tsui and Chu, 2003
Ũ		Growth	Growth/Reproduction	5.89	Tsui and Chu, 2003
		Growth	Growth/Reproduction	3.35	Tsui and Chu, 2003
		Growth	Growth/Reproduction	2.27	Tsui and Chu, 2003
	Arthrospira fusiformis	Growth	Growth/Reproduction	28.2	Lipok et al., 2010
Copepods	Acartia tonsa	Mortality	Mortality/Immobilizati on	1.77	Tsui and Chu, 2003

Table S3. Ag-NPs.

Group	Species	Responses /Endpoint	Classification of the ecotoxicological responses	EC50 (ug/L)	References
Freshwater species					
Microalgae	Raphidocelis subcapitata	Photosynthetic efficiency	Physiological	21,200	Wang et al., 2012
		Photosynthetic efficiency	Physiological	4100	Wang et al., 2012
	Chlamydomonas reinhardtii	Photosynthetic yield	Physiological	20.3	Navarro et al., 2008
		Photosynthetic yield	Physiological	19.8	Navarro et al., 2008
		Photosynthetic yield	Physiological	21.5	Navarro et al., 2008
		Photosynthetic yield	Physiological	356	Navarro et al., 2008
		Photosynthetic yield	Physiological	113	Navarro et al., 2008
		Photosynthetic yield	Physiological	95	Navarro et al., 2008
		Photosynthetic yield	Physiological	86	Navarro et al., 2008
		Photosynthetic yield	Physiological	89	Navarro et al., 2008
		Photosynthetic yield	Physiological	321	Navarro et al., 2012
		Photosynthetic yield	Physiological	139	Navarro et al., 2012
		Photosynthetic yield	Physiological	231	Navarro et al., 2012
		Photosynthetic yield	Physiological	306	Navarro et al., 2012
		Photosynthetic yield	Physiological	84	Navarro et al., 2012
		Photosynthsis	Physiological	138	Piccapietra et al., 2012
		Photosynthsis	Physiological	62.6	Piccapietra et al., 2012
	TI 1 · · ·	Photosynthsis	Physiological	10/8	Dewez & Oukarroum, 2012
	Thalassiosira weissflogii	Growth	Growth/Reproduction	1003	Bielmyer-Fraser et al., 2014
	Pseudokirchneriella subcapitata	Growth	Growth/Reproduction	3.02	Angel et al., 2013
		Growth	Growth/Reproduction	3.2	Angel et al., 2013
		Growth	Growth/Reproduction	32.4	Ribeiro et al., 2014
		Growth	Growth/Reproduction	9.9	Kennedy et al., 2014
		Growth	Growth/Reproduction	115.4	Tuominen et al., 2013
		Growth	Growth/Reproduction	51.8	Tuominen et al., 2013
	Synechococcus sp.	Growth	Growth/Reproduction	1079	Burchardt et al., 2012
	Mixed periphyton	PS yield	Physiological	8953	Gil - Allué et el., 2015
		respiration	Physiological	2373	Gil - Allué et el., 2015
		GLU activity	Physiological	1834	Gil - Allué et el., 2015
		LAP activity	Physiological	2480	Gil - Allué et el., 2015
Annelids	Caenorhabditis elegans	Mortality	Mortality/Immobilizati on	13400	Ellegaard-Jensen et al., 2012
		Mortality	Mortality/Immobilizati on	2800	Ellegaard-Jensen et al., 2012
Cladocera	Daphnia magna	Mortality	Mortality/Immobilizati on	4	Asghari et al., 2012
		Mortality	Mortality/Immobilizati on	2	Asghari et al., 2012
		Inmmobilization	Mortality/Immobilizati	0.75	Lee et al., 2012
		Immobilization	Mortality/Immobilizati on	1	Kim et al., 2011
		Immobilization	Mortality/Immobilizati on	1.4	Kim et al., 2011
		Immobilization	Mortality/Immobilizati on	7	Hoheisel et al. 2012
		Immobilization	Mortality/Immobilizati on	10	Hoheisel et al. 2012

		Immobilization	Mortality/Immobilizati on	20	Hoheisel et al. 2012
		Immobilization	Mortality/Immobilizati	30	Hoheisel et al. 2012
		Immobilization	Mortality/Immobilizati	30	Hoheisel et al. 2012
		Immobilization	Mortality/Immobilizati	10	Jo et al., 2012
		Immobilization	Mortality/Immobilizati	10	Poynton et al., 2012
		Immobilization	Mortality/Immobilizati on	4	Poynton et al., 2012
		Immobilization	Mortality/Immobilizati on	30	Zhao and Wang, 2011
		Immobilization	Mortality/Immobilizati	2	Zhao and Wang, 2011
		Immobilization	Mortality/Immobilizati	1	Zhao and Wang, 2011
		Immobilization	Mortality/Immobilizati	1	Kim et al., 2011
		Immobilization	Mortality/Immobilizati	2	Kim et al., 2011
		Immobilization	Mortality/Immobilizati	20	Blinova et al., 2012
		Immobilization	Mortality/Immobilizati	40	Blinova et al., 2012
	Ceriodaphnia dubia	mortality and/or	Mortality/Immobilizati	221	McLaughlin and Bonzongo,
		Immobilization	Mortality/Immobilizati	5	Kennedy et al., 2012
		Immobilization	Mortality/Immobilizati	30	Kennedy et al., 2012
	Daphnia pulex	Immobilization	Mortality/Immobilizati	40	Griffitt et al. 2008
Fish	Oryzias latipes	Survival	Mortality/Immobilizati	28	Kim et al. 2011
		Survival	Mortality/Immobilizati	67	Kim et al. 2011
		Mortality	Mortality/Immobilizati	1380	Wu and Zhou, 2013
		Mortality	Mortality/Immobilizati	1120	Wu and Zhou, 2013
		Mortality	Mortality/Immobilizati on	870	Wu and Zhou, 2013
		Mortality	Mortality/Immobilizati on	10,000	Kwok et al., 2012
		Mortality	Mortality/Immobilizati on	2500	Kwok et al., 2012
		Mortality	Mortality/Immobilizati on	10,000	Kwok et al., 2012
		Mortality	Mortality/Immobilizati	30	Chae et al., 2009
		Mortality	Mortality/Immobilizati	1390	Kashiwada et al., 2012
	Pimephales promelas	Mortality	Mortality/Immobilizati	90	Hoheisel et al., 2012.
	Danio rerio	Mortality	Mortality/Immobilizati	1610	Wang et al., 2012
		Mortality	Mortality/Immobilizati on	1360	Wang et al., 2012
		Mortality	Mortality/Immobilizati on	780	Wang et al., 2012
		Avoidance	Spatial avoidance	2.5	The current study
	Oreochromis mossambicus	Morphological	Morphological	12,600	Govindasamy and Rahuman, 2012
	Pimephales promelas	Mortality	Mortality/Immobilizati on	9400	Laban et al., 2010

		Mortality	Mortality/Immobilizati on	11,250	Laban et al., 2010
		Mortality	Mortality/Immobilizati on	10,600	Laban et al., 2010
		Mortality	Mortality/Immobilizati on	1360	Laban et al., 2010
Aquatic plant	Lemna minor	Frond number	Growth/Reproduction	38.06	Gubbins et al., 2011
		Frond number	Growth/Reproduction	42.51	Gubbins et al., 2011
	Spirodela polyrhiza	Fresh weight	Growth/Reproduction	13,670	Jiang et al., 2012
		Dry weight	Mortality/Immobilizati on	13,670	Jiang et al., 2012
		ChlA	Physiological	16,100	Jiang et al., 2012
		Phosphate-phosphorus	Physiological	17,330	Jiang et al., 2012
		Nitrate-nitrogen	Physiological	4540	Jiang et al., 2012
Marine/estuarine species					
Microalgae	Phaeodactylum tricornutum	Growth	Growth/Reproduction	162,5	Sendra et al, 2017
		Growth	Growth/Reproduction	100,3	Pérez et al., 2014
		Growth	Growth/Reproduction	2384	Angel et al., 2013
		Growth	Growth/Reproduction	6925	Angel et al., 2013
	Chlorella autotrophica	Growth	Growth/Reproduction	570	Sendra et al., 2018
		Cell viability	Physiological	320	Sendra et al., 2018
		cell complexity	Physiological	1490	Sendra et al., 2018
		EQY	Physiological	1340	Sendra et al., 2018
		active Chlorophyll	Physiological	220	Sendra et al., 2018
		ROS	Physiological	200	Sendra et al., 2018
	Dunaliella salina	Growth	Growth/Reproduction	640	Sendra et al., 2018
		Chla	Physiological	3500	Sendra et al., 2018
		EQY	Physiological	2500	Sendra et al., 2018
		active Chlorophyll	Physiological	780	Sendra et al., 2018
	Cylindrotheca closterium	Growth	Growth/Reproduction	239.5	Pérez et al., 2014
	Nitzchia palea	Growth	Growth/Reproduction	76.6	Pérez et al., 2014
	Thalassiosira pseudonana	Growth	Growth/Reproduction	1079	Burchardt et al., 2012

References

- 1. Abdel-Moneim, A.; Moreira-Santos, M.; Ribeiro, R. A short-term sublethal toxicity assay with zebra fish based on preying rate and its integration with mortality. *Chemosphere*. **2015**, *120*, 568–574.
- Ahmed, H.; H\u00e4der, D.P. A fast algal bioassay for assessment of copper toxicity in water using *Euglena gracilis*. J. Appl. Phycol. 2010, 22(6), 785–792.
- 3. Anderson, D.M.; Morel, F.M. Copper sensitivity of Gonyaulax tamarensis 1. Limnology and Oceanography. 1978, 23(2), 283–295.
- 4. Araújo, C.V.; Diz, F.R.; Lubián, L.M.; Blasco, J.; Moreno-Garrido, I. Sensitivity of *Cylindrotheca closterium* to copper: Influence of three test endpoints and two test methods. *Sci. Total Environ.* **2010**, *408*(17), 3696–3703.
- 5. Araújo, C.V.; Shinn, C.; Moreira-Santos, M.; Lopes, I.; Espíndola, E.L.; Ribeiro, R. Copper-driven avoidance and mortality in temperate and tropical tadpoles. *Aquat. Toxicol.* **2014**, *146*, 70–75.
- Araújo, C.V.; Cedeño-Macías, L.A.; Vera-Vera, V.C.; Salvatierra, D.; Rodríguez, E.N.; Zambrano, U.; Kuri, S. Predicting the effects of copper on local population decline of 2 marine organisms, cobia fish and whiteleg shrimp, based on avoidance response. *Environ. Toxicol. Chem.* 2016, 35(2), 405–410.
- Araújo, C.V.; Roque, D.; Blasco, J.; Ribeiro, R.; Moreira-Santos, M.; Toribio, A.; Aguirre, E.; Barro, S. Stress-driven emigration in complex field scenarios of habitat disturbance: The heterogeneous multi-habitat assay system (HeMHAS). *Sci Total Environ*. 2018; 644, 31–36.
- 8. Araújo, C.V.; Pontes, J.R.S.; Blasco, J. Might the interspecies interaction between fish and shrimps change the pattern of their avoidance response to contamination? *Ecotoxicol. Environ. Saf.* **2019**, *186*, 109757.
- 9. Araújo, C.V.; Rodríguez-Romero, A.; Fernández, M.; Sparaventi, E.; Medina, M.M.; Tovar-Sánchez, A. Repellency and mortality effects of sunscreens on the shrimp *Palaemon varians*: Toxicity dependent on exposure method. *Chemosphere*. **2020**, 127190.
- 10. Arnold, W.R.; Cotsifas, J.S.; Ogle, R.S.; DePalma, S.G.; Smith, D.S. A comparison of the copper sensitivity of six invertebrate species in ambient salt water of varying dissolved organic matter concentrations. *Environ. Toxicol. Chem.* **2010**, *29*(2), 311–319.
- 11. Biandolino, F.; Parlapiano, I.; Faraponova, O.; Prato, E. Effects of short- and long-term exposures to copper on lethal and reproductive endpoints of the harpacticoid copepod *Tigriopus fulvus*. *Ecotoxicolo*. *Environ*. *Saf.* **2018**, 147, 327–333.
- 12. Bui, T.K.L.; Do-Hong, L.C.; Dao, T.S.; Hoang, T.C. Copper toxicity and the influence of water quality of Dongnai River and Mekong River waters on copper bioavailability and toxicity to three tropical species. *Chemosphere*. **2016**, *144*, 872–878.

- 13. Charoy, C.; Janssen, C.R. The swimming behaviour of *Brachionus calyciflorus* (rotifer) under toxic stress: II. Comparative sensitivity of various behavioural criteria. *Chemosphere*. **1999**, *38*(14), 3247–3260.
- 14. Charry, M.P.; Northcott, G.L.; Gaw, S.; Keesing, V.; Costello, M.J.; Tremblay L. A. Development of acute and chronic toxicity bioassays using the pelagic copepod *Gladioferens pectinatus*. *Ecotoxicol. Environ. Saf.*, **2019**, *174*, 611–617.
- 15. Chen, J.C.; Lin, C.H. (2001). Toxicity of copper sulfate for survival, growth, molting and feeding of juveniles of the tiger shrimp, *Penaeus monodon*. Aquaculture. **2001**, *192*(1), 55–65.
- 16. Clearwater, S.J.; Thompson, K.J.; Hickey, C.W. Acute toxicity of copper, zinc, and ammonia to larvae (Glochidia) of a native freshwater mussel *Echyridella menziesii* in New Zealand. *Arch. Environ. Contam. Toxicol.* **2014**, *66*, 213–226.
- Clements, W.H.; Cadmus, P.; Brinkman, S.F. Responses of aquatic insects to Cu and Zn in stream microcosms: Understanding differences between single species tests and field responses. *Environ. Sci. Technol.* 2003, 47(13), 7506–7513.
- 18. De Schamphelaere, K.A.; Janssen, C.R. A biotic ligand model predicting acute copper toxicity for *Daphnia magna*: The effects of calcium, magnesium, sodium, potassium, and pH. *Environ. Sci. Technol.* **2002**, *36*(1), 48–54.
- 19. Diz, F.R.; Araújo, C.V.; Moreno-Garrido, I.; Hampel, M.; Blasco, J. Short-term toxicity tests on the harpacticoid copepod *Tisbe battagliai*: Lethal and reproductive endpoints. *Ecotoxicol. Environ. Saf.* **2009**, *72*(7), 1881–1886.
- 20. Dos Santos Lima, J.C.; Neto, A.J.G.; de Pádua Andrade, D.; Freitas, E.C.; Moreira, R.A.; Miguel, M.; Daam, A.; Rocha, O. Acute toxicity of four metals to three tropical aquatic invertebrates: The dragonfly *Tramea cophysa* and the ostracods *Chlamydotheca* sp. and *Strandesia trispinosa*. *Ecotoxicol*. *Environ*. *Saf*. **2019**, *180*, 535–541.
- Fawaz, E.G.; Kamareddine, L.A.; Salam, D.A. Effect of algal surface area and species interactions in toxicity testing bioassays. *Ecotoxicol. Environ. Saf.* 2019, 174, 584–591.
- 22. Ferrando, M.D.; Andreu, E. Feeding behavior as an index of copper stress in Daphnia magna and *Brachionus calyciflorus*. *Comp. Biochem. Physiol. C: Pharmacol. Toxicol.*, 1993, 106(2), 327–331.
- 23. Franco-de-Sá, J.F.O.; Val, A.L. Copper toxicity for *Scinax ruber* and *Rhinella granulosa* (Amphibia: Anura) of the Amazon: Potential of Biotic Ligand Model to predict toxicity in urban streams. *Acta Amazonica*. **2014**, 44(4), 491–498.
- 24. Franklin, N.M.; Adams, M.S.; Stauber, J.L.; Lim, R.P. Development of an improved rapid enzyme inhibition bioassay with marine and freshwater microalgae using flow cytometry. *Arch. Environ. Contam. Toxicol.* **2001**, *40*(4), 469–480.
- 25. Girling, A.E.; Pascoe, D.; Janssen, C.R.; Peither, A.; Wenzel, A.; Schäfer, H., Persoone, G. Development of methods for evaluating toxicity to freshwater ecosystems. *Ecotoxicol. Environ. Saf.* 2000, 45(2), 148–176.
- 26. Gerhardt, A.; Palmer, C. Copper tolerances of *Adenophlebia auriculata* (Eaton) 1884 (Insecta: Ephemeroptera) and *Burnupia sten*ochorias Cawston 1932 (Gastropoda: Ancylidae) in indoor artificial streams. *Sci. Total Environ.* **1998**, 215(3), 217–229.
- 27. García-Muñoz, E.; Guerrero, F.; Parra, G. Effects of copper sulfate on growth, development, and escape behavior in *Epidalea* calamita embryos and larvae. Arch. Environ. Contam.Toxicol. 2009, 56(3), 557.
- 28. Giarratano, E.; Comoglio, L.; Amin, O. Heavy metal toxicity in *Exosphaeroma gigas* (Crustacea, Isopoda) from the coastal zone of Beagle Channel. *Ecotoxicol. Environ. Saf.* **2007**, *68*(3), 451–462.
- 29. Gissi, F.; Stauber, J.; Reichelt-Brushett, A.; Harrison, P.L.; Jolley, D.F. Inhibition in fertilisation of coral gametes following exposure to nickel and copper. *Ecotoxicol. Environ. Saf.* 2017, 145, 32–41.
- 30. Gorski, J.; Nugegoda, D. Sublethal toxicity of trace metals to larvae of the blacklip abalone, *Haliotis rubra. Environ. Toxicol. Chem.* **2006**, 25(5), 1360–1367.
- 31. Harmon, S.M.; Specht, W.L.; Chandler, G.T. A comparison of the daphnids *Ceriodaphnia dubia* and *Daphnia ambigua* for their utilization in routine toxicity testing in the southeastern United States. *Arch. Environ. Contam. Toxicol.* **2003**, 45(1), 0079–0085.
- 32. Herkovits, J.; Helguero, L.A. Copper toxicity and copper–zinc interactions in amphibian embryos. *Sci. Total Environ.* **1998**, 221(1), 1–10.
- 33. Howe, P.L.; Reichelt-Brushett, A.J.; Clark, M.W. Development of a chronic, early life-stage sub-lethal toxicity test and recovery assessment for the tropical zooxanthellate sea anemone *Aiptasia pulchella*. *Ecotoxicol. Environ. Saf.* **2014**, *100*, 138–147.
- 34. Islam, M.A.; Blasco, J.; Araújo, C.V. Spatial avoidance, inhibition of recolonization and population isolation in zebrafish (*Danio rerio*) caused by copper exposure under a non-forced approach. *Sci. Total Environ.* **2019**, *653*, 504–511.
- 35. Kraak, M.H.; Toussaint, M.; Lavy, D.; Davids, C. Short-term effects of metals on the filtration rate of the zebra mussel *Dreissena* polymorpha. Environ. Pollut. **1994**, 84(2), 139–143.
- Koivisto, S.; Ketola, M.; Walls, M. Comparison of five cladoceran species in short-and long-term copper exposure. *Hydrobiologia*. 1992, 248(2), 125–136.
- 37. Laurer, M.M.; Bianchini, A. Chronic copper toxicity in the estuarine copepod *Acartia tonsa* at different salinities. *Environ. Toxicol. Chem.* **2010**, *29*, 2297–2303.
- 38. Lopes, I.; Baird, D.J.; Ribeiro, R. Avoidance of copper contamination by field populations of *Daphnia longispina*. *Environ*. *Toxicol*. *Chem.*. **2004**, *23*(7), 1702–1708.
- 39. Lüderitz, V.; Nicklisch, A. The effect of pH on copper toxicity to blue-green algae. *Int. Rev. Der Gesamten Hydrobiol. Und Hydrographie.* **1989**. 74(3), 283–291.
- 40. Manfra, L.; Canepa, S.; Piazza, V.; Faimali, M. Lethal and sublethal endpoints observed for Artemia exposed to two reference toxicants and an ecotoxicological concern organic compound. *Ecotoxicol. Environ. Saf.* **2016**, *123*, 60–64.
- 41. Moreira-Santos, M.; Donato, C.; Lopes, I.; Ribeiro, R. Avoidance tests with small fish: Determination of the median avoidance concentration and of the lowest-observed-effect gradient. *Environ. Toxicol. Chem.*. **2008**, 27(7), 1576–1582.
- 42. Moreno Garrido, I.; Lubián, L.M.; Soares, A.M.V.M. Oxygen production rate as a test for determining toxicity of copper to *Rhodomonas salina* Hill and Wehterbee (Cryptophyceae). *Bull. Environ. Contam. Toxicol.* **1999**, *62*(6), 776–782.

- 43. Moreno-Garrido, I.; Lubián, L.M.; Soares, A.M. Influence of cellular density on determination of EC50 in microalgal growth inhibition tests. *Ecotoxicol. Environ. Saf.* 2000, 47(2), 112–116.
- 44. Morroni, L.; Pinsino, A.; Pellegrini, D.; Regoli, F. Reversibility of trace metals effects on sea urchin embryonic development. *Ecotoxicol. Environ. Saf.* 2018, 148, 923–929.
- 45. Nonnotte, L.; Boitel, F.; Truchot, J.P. Waterborne copper causes gill damage and hemolymph hypoxia in the shore crab *Carcinus maenas*. *Canadian* J. Zool. **1993**, *71*(8), 1569–1576.
- 46. Naddy, R.B.; Cohen, A.S.; Stubblefield, W.A. The interactive toxicity of cadmium, copper, and zinc to *Ceriodaphnia dubia* and rainbow trout (Oncorhynchus mykiss). *Environ. Toxicol. Chem.* **2015**, *34*(4), 809–815.
- 47. Oliveira, B.L.; Fernandes, L.F.L.; Bianchini, A.; Chiparri-Gomes, A.R.; Silva, B.F.; Brandão, G.P.; Gomes, L.C. Acute copper toxicity in juvenile fat snook *Centropomus parallelus* (Teleostei: Centropomidae) in sea water. *Neotrop. Ichthyol.* 2014, 12, 845–852.
- 48. Rosen, G.; Miller, K. A postexposure feeding assay using the marine polychaete Neanthes arenaceodentata suitable for laboratory and in situ exposures. *Environ. Toxicol. Chem.* **2011**, *30*(3), 730–737.
- 49. Rotini, A.; Gallo, A.; Parlapiano, I.; Berducci, M.T.; Boni, R.; Tosti, E.; Prato, E.; Maggi, C.; Cicero, A.M.; Migliore, L.; Manfra, L. Insights into the CuO nanoparticle ecotoxicity with suitable marine model species. *Ecotoxicol. Environ. Saf.* **2018**, 147, 852–860.
- 50. Pérez-García, A.; Codina, J.C.; Cazorla, F.M.; de Vicente, A. Rapid respirometric toxicity test: Sensitivity to metals. *Bull. Environ. Contam. Toxicol.* **1993**, *50*, 703–708.
- 51. Pérez-Legaspi, I.A.; Rico-Martínez, R.; Pineda-Rosas, A. Toxicity testing using esterase inhibition as a biomarker in three species of the genus Lecane (Rotifera). *Environ. Toxicol. Chemistry.* **2002**, *21*(4), 776–782.
- 52. Qiu, J.W.; Thiyagarajan, V.; Cheung, S.; Qian, P.Y. Toxic effects of copper on larval development of the barnacle *Balanus amphitrite. Mar. Pollut. Bulletin.* **2005**, *51*(8–12), 688–693.
- 53. Redondo-López, S.; Mena, F.; González-Ortegón, E.; Araújo, C.V.M. Dissimilar behavioral and spatial avoidance responses by shrimps from tropical and temperate environments exposed to copper. *Environ Toxicol Chem. (under review)*.
- 54. Shuhaimi-Othman, M.; Yakub, N.; Ramle, N.A.; Abas, A. Comparative toxicity of eight metals on freshwater fish. *Toxicol. Indust. Health.* **2015**, *31*(9), 773–782.
- Silva, D.C.; Araújo, C.V.; Marassi, R.J.; Cardoso-Silva, S.; Neto, M.B.; Silva, G.C.; Ribeiro, R.; Silva, F.T.; Paiva, T.C.B.; Pompêo, M.L. Influence of interspecific interactions on avoidance response to contamination. *Sci. Total Environ.* 2018, 642, 824–831.
- 56. Soares, M.P.; Jesus, F.; Almeida, A.R.; Zlabek, V.; Grabic, R.; Domingues, I.; Hayd, L. Endemic shrimp *Macrobrachium pantanalense* as a test species to assess potential contamination by pesticides in Pantanal (Brazil). *Chemosphere*. **2017**, *168*, 1082–1092.
- 57. Snell, T.W.; Johnston, R.K.; Matthews, A.B.; Park, N.; Berry, S.; Brashear, J. Using *Proales similis* (Rotifera) for toxicity assessment in marine waters. *Environ. Toxicol.* **2019**, *34*(5), 634–644.
- 58. Stauber, J.L.; Binet, M.T.; Bao, V.W.; Boge, J.; Zhang, A.Q.; Leung, K.M.; Adams, M.S. Comparison of the Qwiklite[™] algal bioluminescence test with marine algal growth rate inhibition bioassays. *Environ. Toxicol.* **2008**. *23*(5), 617–625.
- 59. Trenfield, M.A.; van Dam, J.W.; Harford, A.J.; Parry, D.; Streten, C.; Gibb, K.; van Dam, R.A. A chronic toxicity test for the tropical marine snail *Nassarius dorsatus* to assess the toxicity of copper, aluminium, gallium, and molybdenum. *Environ. Toxicol. Chem.* **2016**, *35*(7), 1788–1795.
- 60. Trenfield, M.A.; van Dam, J.W.; Harford, A.J.; Parry, D.; Streten, C.; Gibb, K.; van Dam, R.A. Assessing the chronic toxicity of copper and aluminium to the tropical sea anemone *Exaiptasia pallida*. *Ecotoxicol*. *Environ*. *Saf*. **2017**, *139*, 408–415.
- 61. Toussaint, M.W.; Shedd, T.R.; van der Schalie, W.H.; Leather, G.R. A comparison of standard acute toxicity tests with rapidscreening toxicity tests. *Environ. Toxicol. Chem.* **1995**, *14*(5), 907–915.
- 62. Vera-Vera, V.C.; Guerrero, F.; Blasco, J.; Araújo, C.V. Habitat selection response of the freshwater shrimp *Atyaephyra desmarestii* experimentally exposed to heterogeneous copper contamination scenarios. *Sci. Total Environ.* **2019**, *662*, 816–823.
- 63. Vieira, L.R.; Gravato, C.; Soares, A.M.V.M.; Morgado, F.; Guilhermino, L. Acute effects of copper and mercury on the estuarine fish *Pomatoschistus microps*: Linking biomarkers to behaviour. *Chemosphere*. **2009**, *76*(10), 1416–1427.
- 64. Weir, S.M.; Yu, S.; Scott, D.E.; Lance, S.L. Acute toxicity of copper to the larval stage of three species of ambystomatid salamanders. *Ecotoxicology*. **2019**, *28*(9), 1023–1031.
- 65. Wong, C.K.; Pak, A.P. Acute and subchronic toxicity of the heavy metals copper, chromium, nickel, and zinc, individually and in mixture, to the freshwater copepod *Mesocyclops pehpeiensis*. *Bull. Environ. Contam. Toxicol.* **2004**, 73, 190–196.
- 66. Zapata, V.; Greco, L.L.; Rodríguez, E.M. Effect of copper on hatching and development of larvae of the estuarine crab *Chasmagnathus granulata* (Decapoda, Brachyura). *Environ. Toxicol. Chem.* **2001**, 20(7), 1579–1583.
- 67. Alberdi, J.L.; Sáenz, M.E.; Di Marzio, W.D.; Tortorelli, M.C. Comparative acute toxicity of two herbicides, paraquat and glyphosate, to *Daphnia magna* and *D. spinulata*. *Bull. Environ. Contam. Toxicol.* **1996**, 57(2), 229–235.
- 68. Anton, F.A.; Ariz, M.; Alia, M. Ecotoxic effects of four herbicides (glyphosate, alachlor, chlortoluron and isoproturon) on the algae *Chlorella pyrenoidosa* Chick. *Sci. Total Environ.* **1993**, *134*, 845–851.
- 69. Demetrio, P.M.; Bonetto, C.; Ronco, A.E. The effect of cypermethrin, chlorpyrifos, and glyphosate active ingredients and formulations on *Daphnia magna* (Straus). *Bull. Environ. Contam. Toxicol.* **2014**, *93*(3), 268–273.
- 70. Folmar, L.C.; Sanders, H.O.; Julin, A.M. Toxicity of the herbicide glyphosate and several of its formulations to fish and aquatic invertebrates. *Arch. Environ. Contam. Toxicol.* **1979**, *8*(3), 269–278.
- 71. Hernández-García, C.I.; Martínez-Jerónimo, F. Multistressor negative effects on an experimental phytoplankton community. The case of glyphosate and one toxigenic cyanobacterium on *Chlorophycean microalgae*. *Sci. Total Environ*. **2020**, *717*, 137186.
- 72. Lipok, J.; Studnik, H.; Gruyaert, S. The toxicity of Roundup® 360 SL formulation and its main constituents: Glyphosate and isopropylamine towards non-target water photoautotrophs. *Ecotoxicol. Environ. Saf.* **2010**, *73*(7), 1681–1688.

- 73. Ma, J.; Li, X. Alteration in the cytokine levels and histopathological damage in common carp induced by glyphosate. *Chemosphere*. **2015**, *128*, 293–298.
- 74. Mann, R.M.; Bidwell, J.R. The toxicity of glyphosate and several glyphosate formulations to four species of southwestern Australian frogs. *Arch. Environ. Contamin. Toxicology.* **1999**, *36*(2), 193–199.
- 75. Mena, F.; Romero, A.; Blasco, J.; Araújo, C.V.M. Can a mixture of agrochemicals (glyphosate, chlorpyrifos and chorothalonil) mask the perception of an individual chemical? A hidden trap underlying ecological risk. *Environ. Pollut. (under review)*.
- 76. Nešković, N.K.; Poleksić, V.; Elezović, I.; Karan, V.; Budimir, M. Biochemical and histopathological effects of glyphosate on carp, *Cyprinus carpio L. Bull. Environ. Contam. Toxicol.* **1996**, *56*(2), 295–302.
- 77. Perkins, P.J.; Boermans, H.J.; Stephenson, G.R. Toxicity of glyphosate and triclopyr using the frog embryo teratogenesis assay— Xenopus. *Environ. Toxicol. Chem.: An International Journal.* **2000**, *19*(4), 940–945.
- Rodriguez-Gil, J.L.; Prosser, R.; Poirier, D.; Lissemore, L.; Thompson, D.; Hanson, M.; Solomon, K.R. Aquatic hazard assessment of MON 0818, a commercial mixture of alkylamine ethoxylates commonly used in glyphosate-containing herbicide formulations. Part 1: Species sensitivity distribution from laboratory acute exposures. *Environ. Toxicol. Chem.* 2017, 36(2), 501–511.
- 79. Romero, D.M.; de Molina, M.C.R.; Juárez, Á.B. Oxidative stress induced by a commercial glyphosate formulation in a tolerant strain of *Chlorella kessleri*. *Ecotoxicol*. *Environ*. *Saf*. **2011**, 74(4), 741–747.
- 80. Sikorski, Ł.; Baciak, M.; Bęś, A.; Adomas, B. The effects of glyphosate-based herbicide formulations on *Lemna minor*, a non-target species. *Aquat. Toxicol.* **2019**, 209, 70–80.
- 81. Smedbol, É.; Lucotte, M.; Labrecque, M.; Lepage, L.; Juneau, P. Phytoplankton growth and PSII efficiency sensitivity to a glyphosate-based herbicide (Factor 540®). *Aquat. Toxicol.* **2017**, *192*, 265–273.
- 82. Tsui, M.T.K.; Chu, L.M. Aquatic toxicity of glyphosate-based formulations: Comparison between different organisms and the effects of environmental factors. *Chemosphere*. **2003**, *52*, 1189–1197.
- 83. Iummato, M.M.; Fassiano, A.; Graziano, M.; Afonso, M.S.; Molina, M.C.R.; Juárez, A.B. Effect of glyphosate on the growth, morphology, ultrastructure and metabolism of *Scenedesmus vacuolatus*. *Ecotoxicol. Environ. Saf.* **2019**, *172*, 471–479.
- 84. Wagner, N.; Veith, M.; Lötters, S.; Viertel, B. Population and life-stage-specific effects of two herbicide formulations on the aquatic development of European common frogs (*Rana temporaria*). *Environ. Toxicol. Chem.* **2017**, *36*(1), 190–200.
- 85. Wojtaszek, B.F.; Staznik, B.; Chartrand, D.T.; Stephenson, G.R.; Thompson, D.G. Effects of Vision® herbicide on mortality, avoidance response, and growth of amphibian larvae in two forest wetlands. *Environ. Toxicol. Chem: An International Journal.* **2004**, 23(4), 832–842.
- 86. Zhang, Q.; Qu, Q.; Lu, T.; Ke, M.; Zhu, Y.; Zhang, M.; Zhang, Z.; Du, B.; Pan, X.; Sun, L.; Qian, H. The combined toxicity effect of nanoplastics and glyphosate on *Microcystis aeruginosa* growth. *Environ. Pollut.* **2018**, 243, 1106–1112.
- 87. Angel, B.M.; Batley, G.E.; Jarolimek, C.V.; Rogers, N.J. The impact of size on the fate and toxicity of nanoparticulate silver in aquatic systems. *Chemosphere*. **2013**, *93*(2), 359–365.
- 88. Asghari, S.; Johari, S.A.; Lee, J.H.; Kim, Y.S.; Jeon, Y.B.; Choi, H.J.; Yu, I.J. Toxicity of various silver nanoparticles compared to silver ions in *Daphnia magna*. *Jour. Nanobiotech.* **2012**, *10*(1), 14.
- 89. Bielmyer-Fraser, G.K.; Jarvis, T.A.; Lenihan, H.S.; Miller, R.J. Cellular partitioning of nanoparticulate versus dissolved metals in marine phytoplankton. *Environ. Sci. Techol.* **2014**, *48*(22), 13443–13450.
- Burchardt, A.D.; Carvalho, R.N.; Valente, A.; Nativo, P.; Gilliland, D.; Garcia, C.P.; Passarella, R.; Pedroni, V.; Rossi, F.; Lettieri, T. Effects of silver nanoparticles in diatom *Thalassiosira pseudonana* and *cyanobacterium Synechococcus sp. Environ. Sci. Technol.* 2012, 46(20), 11336–11344.
- 91. Blinova, I.; Niskanen, J.; Kajankari, P.; Kanarbik, L.; Käkinen, A.; Tenhu, H.; Kahru, A. Toxicity of two types of silver nanoparticles to aquatic crustaceans *Daphnia magna* and *Thamnocephalus platyurus*. *Enviro*. *I Sci. Poll. Resear.* **2013**, 20(5), 3456–3463.
- 92. Chae, Y.J.; Pham, C.H.; Lee, J.; Bae, E.; Yi, J.; Gu, M.B. Evaluation of the toxic impact of silver nanoparticles on Japanese medaka (*Oryzias latipes*). Aquat. Toxicol. 2009, 94(4), 320–327.
- 93. Dewez, D.; Oukarroum, A. Silver nanoparticles toxicity effect on photosystem II photochemistry of the green alga *Chlamydomo-nas reinhardtii* treated in light and dark conditions. *Toxicol. Environ. Chem.* **2012**, *94*(8), 1536–1546.
- Ellegaard-Jensen, L.; Jensen, K.A.; Johansen, A. Nano-silver induces dose-response effects on the nematode Caenorhabditis elegans. Ecotoxicol. Environ. Saf. 2012, 80, 216–223.
- 95. Gil-Allué, C.; Schirmer, K.; Tlili, A.; Gessner, M.O.; Behra, R. Silver nanoparticle effects on stream periphyton during short-term exposures. *Environ. Sci. Technol.* **2015**, *49*(2), 1165–1172.
- 96. Govindasamy, R.; Rahuman, A.A. Histopathological studies and oxidative stress of synthesized silver nanoparticles in Mozambique tilapia (*Oreochromis mossambicus*). *Jour. Environ. Sci.* **2012**, 24(6), 1091–1098.
- 97. Griffitt, R.J.; Luo, J.; Gao, J.; Bonzongo, J.C.; Barber, D.S. Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. *Environ. Toxicol. Chem.* **2008**, *27*, 1972–1978.
- Gubbins, E.J.; Batty, L.C.; Lead, J.R. Phytotoxicity of silver nanoparticles to Lemna minor L. Environ. Pollut. 2011, 159(6), 1551– 1559.
- 99. Hoheisel, S.M.; Diamond, S.; Mount, D. Comparison of nanosilver and ionic silver toxicity in *Daphnia magna* and *Pimephales promelas*. *Environ*. *Toxicol*. *Chem*. **2012**, *31*(11), 2557–2563.
- Jiang, H.S.; Li, M.; Chang, F.Y.; Li, W.; Yin, L.Y. Physiological analysis of silver nanoparticles and AgNO3 toxicity to Spirodela polyrhiza. Environ. Toxicol. Chem. 2012, 31(8), 1880–1886.
- Jo, H.J.; Choi, J.W.; Lee, S.H.; Hong, S.W. Acute toxicity of Ag and CuO nanoparticle suspensions against *Daphnia magna*: The importance of their dissolved fraction varying with preparation methods. *J. Hazard. Mater.* 2012, 22–228, 301–308.

- Kashiwada, S.; Ariza, M.E.; Kawaguchi, T.; Nakagame, Y.; Jayasinghe, B, S.; Gärtner K.; Kagami, Y.; Sabo-Attwood, S.; Fergunson, P.L.; Chandler, G.T. Silver nanocolloids disrupt medaka embryogenesis through vital gene expressions. *Environ. Sci. Technol.* 2012, 46, 6278–6287.
- Kennedy, A.J.; Hull, M.S.; Bednar, A.J.; Goss, J.D.; Gunter, J.C.; Bouldin, J.L.; Vikesland, P.J.; Steevens, J.A. Fractionating nanosilver: Importance for determining toxicity to aquatic test organisms. *Environ. Sci. Tech.* 2010, 44(24), 9571–9577.
- 104. Kennedy, A.J.; Chappell, M.A.; Bednar, A.J.; Ryan, A.C.; Laird, J.G.; Stanley, J.K.; Steevens, J.A. Impact of organic carbon on the stability and toxicity of fresh and stored silver nanoparticles. *Environ. Sci. Technol.* **2012**, *46*, 10772–10780.
- 105. Kim, J.; Kim, S.; Lee, S. Differentiation of the toxicities of silver nanoparticles and silver ions to the Japanese medaka (*Oryzias latipes*) and the cladoceran *Daphnia magna*. *Nanotoxicology*. **2011**, 5(2), 208–214.
- Kwok, K.W.; Auffan, M.; Badireddy, A.R.; Nelson, C.M.; Wiesner, M.R.; Chilkoti, A.; Hinton, D.E. Uptake of silver nanoparticles and toxicity to early life stages of Japanese medaka (*Oryzias latipes*): Effect of coating materials. *Aquat. Toxicol.* 2012, 120, 59–66.
- 107. Laban, G.; Nies, L.F.; Turco, R.F.; Bickham, J.W.; Sepúlveda, M.S. The effects of silver nanoparticles on fathead minnow (*Pimephales promelas*) embryos. *Ecotoxicology*. **2010**, *19*(1), 185–195.
- 108. Lee, Y.J.; Kim, J.; Oh, J.; Bae, S.; Lee, S.; Hong, I.S.; Kim, S.H. Ion-release kinetics and ecotoxicity effects of silver nanoparticles. *Environ. Toxicol. Chem.* **2012**, *31*(1), 155–159.
- McLaughlin, J.; Bonzongo, J-C. J. Effects of natural water chemistry on nanosilver behavior and toxicity to Ceriodaphnia dubia and Pseudokirchneriella subcapitata. Environ. Toxicol. Chem. 2012, 31, 168–175.
- Navarro, E.; Piccapietra, F.; Wagner, B.; Marconi, F.; Kaegi, R.; Odzak, N.; Sigg, L.; Behra, R. Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ. Sci. Techol. 2008, 42(23), 8959–8964.
- 111. Pérez, S., Moreno-Garrido, I., Capitán-Valley, L.F., Lapresta-Fernández, A., Lubián, L.M., Blasco, J., 2014. *Toxicity of silver and glod-silver alloy nanoparticles in the marine and freshawater microalgae*. In: Abstracts of the IV Congress of Marine Sciences. Las Palmas de Gran Canaria, Spain, June 11th to 13th, 2014.
- 112. Piccapietra, F.; Allué, C.G.; Sigg, L.; Behra, R. Intracellular silver accumulation in Chlamydomonas reinhardtii upon exposure to carbonate coated silver nanoparticles and silver nitrate. *Environ. Sci. Techol.* **2012**, *46*(13), 7390–7397.
- Poynton, H.C.; Lazorchak, J.M.; Impelliteri, C.A.; Blalock, B.J.; Rogers, K.; Allen H. J.; Loguinov, A.; Heckman, J.L.; Govindasmawy, S. Toxicogenomic responses of nanotoxicity in *Daphnia magna* exposed to silver nitrate and coated silver nanoparticles. *Environ. Sci. Technol.* 2012, 46, 6288–6296.
- Ribeiro, F.; Gallego-Urrea, J.A.; Jurkschat, K.; Crossley, A.; Hassellöv, M.; Taylor, C.; Loureiro, S. Silver nanoparticles and silver nitrate induce high toxicity to Pseudokirchneriella subcapitata, *Daphnia magna* and *Danio rerio*. *Science of the Total Environment*. 2014, 466, 232–241.
- 115. Sendra, M.; Yeste, M.P.; Gatica, J.M.; Moreno-Garrido, I.; Blasco, J. Direct and indirect effects of silver nanoparticles on freshwater and marine microalgae (*Chlamydomonas reinhardtii* and *Phaeodactylum tricornutum*). *Chemosphere*. **2017**, 179, 279–289.
- 116. Sendra, M.; Blasco, J.; Araújo, C.V. Is the cell wall of marine phytoplankton a protective barrier or a nanoparticle interaction site? Toxicological responses of *Chlorella autotrophica* and *Dunaliella salina* to Ag and CeO2 nanoparticles. *Ecol indics*. 2018, 95, 1053–1067.
- 117. Tuominen, M.; Sillanp_a_a, M.; Schultz, E. Toxicity and stability of silver nanoparticles to the green alga *Pseudokirchneriella subcapitata* in boreal freshwater samples and growth alga. *Nanomater. Environ.* **2013**, 48–57.
- 118. Wang, Z.; Chen, J.; Li, X.; Shao, J.; Peijnenburg, W.J.G.M. Aquatic toxicity of nanosilver colloids to different trophic organisms: Contributions of particles and free silver ion. *Environ. Toxicol. Chem.* **2012**, *31*, 2408–2413.
- 119. Wu, Y.; Zhou, Q. Silver nanoparticles cause oxidative damage and histological changes in medaka (*Oryzias latipes*) after 14 days of exposure. *Environ. Toxicol. Chem.* **2013**, 32(1), 165–173.
- 120. Zhao, C.M.; Wang, W.X. Comparison of acute and chronic toxicity of silver nanoparticles and silver nitrate to *Daphnia magna*. *Environ. Toxicol. Chem.* **2011**, *30*, 885–892.